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Abstract. Architectural design patterns (ADPs) are architectural solutions to common architectural design
problems. They are an important concept in software architectures used for the design and analysis of
architectures. An ADP usually constrains the design of an architecture and, in turn, guarantees some desired
properties for architectures implementing it. Sometimes, however, the constraints imposed by an ADP do
not lead to the claimed guarantee. Thus, applying such patterns for the design of architectures might result
in architectures which do not fulfill their intended requirements. To address this problem, we propose an
approach for the verification of ADPs, based on interactive theorem proving. To this end, we introduce a
model for dynamic architectures and a language for the specification of ADPs over this model. Moreover,
we propose a framework for the interactive verification of such specifications based on Isabelle/HOL. In
addition we describe an algorithm to map a specification to a corresponding Isabelle/HOL theory over our
framework. To evaluate the approach, we implement it in Eclipse/EMF and use it for the verification of
four ADPs: variants of the Singleton, the Publisher-Subscriber, the Blackboard pattern, and a pattern for
Blockchain architectures. With our approach we complement traditional approaches for the verification of
architectures, which are usually based on automatic verification techniques such as model checking.
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1. Introduction

The architecture of a system describes the overall organization of a system into components and connections
between these components [BS01]. Since software systems are becoming increasingly big and complex, the
architecture of a system plays an ever more important role in their development. Architectural design patterns
(ADPs) are an important tool in software engineering employed for the conceptualization and analysis of
architectures. They capture design experience and are regarded as the “Grand Tool” for designing a software

Correspondence and offprint requests to: Diego Marmsoler, Technische Universität München, Institut für Informatik – Lehrstuhl
IV (I4), Boltzmannstr. 3, 85748 Garching bei München, Germany. e-mail: diego.marmsoler@tum.de



Singleton
instance

getInstance()

Fig. 1. Specification of the Singleton pattern as it is usually found in literature.

system’s architecture [TMD09]. There exist many different definitions of what constitutes an ADP. In the
following, we list some of them:

“An architectural pattern is a named collection of architectural design decisions that are applicable to
a recurring design problem, parameterized to account for different software development contexts in which
that problem appears.” [TMD09]

“An architectural pattern expresses a fundamental structural organization schema for software systems.
It provides a set of predefined subsystems, specifies their responsibilities, and includes rules and guidelines
for organizing the relationships between them.” [BMR+96]

“An architectural pattern is a description of element and relation types together with a set of constraints
on how they may be used. A pattern can be thought of as a set of constraints on an architecture - on the
element types and their patterns of interaction - and these constraints define a set or family of architectures
that satisfy them.” [BCK07]

“An architectural style [. . .] defines a family of [. . .] systems in terms of a pattern of structural organization.
More specifically, an architectural style defines a vocabulary of components and connector types, and a set
of constraints on how they can be combined.” [SG96]

Although these definitions vary in some aspects, two characteristic properties about ADPs can be iden-
tified:

1. An ADP solves a recurring architectural design problem.
2. An ADP consists of a collection of architectural design constraints which restrict the design of an archi-

tecture.

In the following, we demonstrate this observation by means of three prominent examples: the Singleton
pattern, the Publisher-Subscriber pattern, and the Blackboard pattern.

Example 1 (The Singleton Pattern). A very basic example of an ADP, used often in object-oriented
systems, is the so-called Singleton pattern [GHJV94]. It aims to address the problem that a system must
have at most one active component of a certain type at all points in time.

If we look at a Singleton’s specification, we usually find a diagram similar to the one depicted in Fig. 1.
The diagram is accompanied by a description explaining that “instance” contains an instance of the singleton
which can be accessed through the interface “getInstance()”. Moreover, the description poses a constraint on
an architecture, requiring that a new instance of type singleton is only created if no instance exists yet.

Example 2 (The Publisher-Subscriber Pattern). Another ADP often employed to design architec-
tures is the so-called Publisher-Subscriber pattern. It aims to address the problem of obtaining a “flexible way
of communication” between certain components of an architecture. Flexibility, in this context, means that a
component can register for certain events at other components in order to be notified about the occurrence
of such events.

The pattern is usually depicted with a diagram similar to the one found in Fig.2. The description usually
requires the existence of two types of components: publishers and subscribers. Thereby, subscribers can
subscribe for certain events and publishers are able to publish messages associated with an event. Moreover,
the description usually poses a constraint on the connection between publisher and subscriber components
which requires that, whenever a publisher component publishes a message associated with an event for
which a subscriber component is currently registered, a connection between the corresponding publisher and
subscriber component needs to be established.

Example 3 (The Blackboard Pattern). Another, more complex, pattern found in literature is the
Blackboard pattern [TMD09, BMR+96, SG96] which is often employed for the design of systems solving
logical equations.
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Fig. 2. Specification of the Publisher-Subscriber pattern as it is usually found in literature.
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Fig. 3. Specification of the Blackboard pattern as it is usually found in literature.

The Blackboard pattern aims to address the design problem known as “collaborative problem solving” 1:
it is desired to design an architecture for a system which can solve a complex problem by breaking it down
into simpler subproblems, which can be solved and assembled to a solution for the original problem. For
example, solving a complex, logical equation (involving multiple operators), can be split into the problem of
solving simpler sub-formulas and combining their solutions according to the involved logical operators.

Figure 3 shows an architecture diagram for the Blackboard pattern as it is usually found in literature.
The pattern requires from an architecture the existence of the following types of components: blackboards,
knowledge sources, and an optional controller component. Thereby, a blackboard keeps the overall state
towards solving the original problem and knowledge sources are able to solve specific subproblems. Amongst
others, the pattern requires that knowledge sources communicate exclusively through the blackboard compo-
nent: they either provide solutions to currently open subproblems (given that solutions for other subproblems
are available), or they communicate their ability to solve open subproblems and require a set of other sub-
problems to be solved first. The controller component is optional and can be employed to improve the
communication between blackboard and knowledge sources.

1.1. Architectural Design Patterns

For the scope of this text, we define an ADP as follows:

Definition: Architectural design pattern.

An architectural design pattern consists of a specification in terms of a set of architectural constraints,
i.e., constraints about different aspects of an architecture. Moreover, it comes with a set of architectural
guarantees for an architecture implementing the pattern.

In this context, architectural constraints concern different aspects of an architecture:

• The types of data exchanged by the components.

1 Problem in this context is different from architectural design problem.
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Fig. 4. Architectures and ADPs.

• The types of components involved in an architecture (including assumptions about their syntactic and
semantic interfaces) as well as the existence of components of a certain type.

• Activation and deactivation of components of certain types.
• Connections between components of certain types.

The architectural guarantees, on the other hand, represent properties for an architecture which fulfills the
constraints imposed by the pattern. Architectural guarantees usually characterize correct solutions for the
architectural design problem addressed by an ADP. Figure 4 sketches the idea behind ADPs: An architecture
which follows the constraints imposed by a pattern is assumed to satisfy the guarantees provided by the
pattern. Note that we are only concerned with functional guarantees here and we don’t consider guarantees
about non-functional aspects. This is an important aspect which is further discussed in Sect. 7.3.

In the following, we demonstrate the definition by means of the three example patterns introduced above2.

Example 4 (The Singleton Pattern). Let’s first consider the Singleton pattern introduced in Ex. 1 and
reformulate it in terms of our new definition. The constraints imposed by the pattern concern two aspects
of an architecture: the types of components as well as the activation and deactivation of components. Thus,
we may formulate two corresponding types of architectural constraints:

• A Singleton pattern requires the existence of one type of component: the singleton. However, it does not
pose any constraints on the interface of a singleton component and as a consequence, it does also not
constrain its behavior.

• In addition, our version of the Singleton pattern requires that a component of type singleton is always
active and only one component of type singleton is active at each point in time. Note that other versions
of the Singleton pattern may require that at most one component of type singleton is active at each point
in time. Moreover, in our version of the Singleton pattern, we also require that the active component of
type singleton is unique over time, i.e., the component does not change over time. Also here, we could
think of different versions of the pattern, in which, for example, the singleton component is allowed to
change over time.

If we try to formulate a solution for the design problem addressed by the pattern, we may end up with
the following architectural guarantee (in terms of a safety property) for an architecture implementing the
Singleton pattern: A system implementing the Singleton pattern is guaranteed to have a unique component
of type singleton which is active at each point in time.

Example 5 (The Publisher-Subscriber Pattern). Let’s now turn to the Publisher-Subscriber pattern
and derive architectural constraints and architectural guarantees from the pattern’s description provided
in Ex. 2. In contrast to a Singleton pattern, a Publisher-Subscriber pattern constrains three aspects of an
architecture: data types, component types, and connections between the ports of certain components. In the
following, we provide corresponding architectural constraints:

2 We provide only informal specifications here. Corresponding formalizations are provided in Sect. 3.
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• A Publisher-Subscriber pattern requires the existence of an abstract data type to exchange subscriptions
and unsubscriptions for certain events.

• In addition, a Publisher-Subscriber pattern requires two types of components: publisher and subscriber
components. Although we do require the existence of certain ports for publisher as well as subscriber
components, we do not require any assumptions about the behavior of these components.

• Finally, a Publisher-Subscriber pattern requires that, whenever a publisher component sends a message
associated with an event for which a subscriber component is registered, the subscriber must be connected
to the publisher, i.e, a channel between the corresponding ports of the publisher and subscriber component
must be active in such a situation.

The following guarantee may be derived from the pattern’s addressed design problem: A subscriber
receives all the messages associated with an event for which it is subscribed. This time, the guarantee is given
in terms of a liveness property for architectures implementing the pattern.

Example 6 (The Blackboard Pattern). Finally, let’s derive some architectural constraints from the de-
scription of the Blackboard pattern presented in Ex. 3. Compared to the other examples, our version of the
Blackboard pattern constraints every aspect of an architecture: data types, component types, component
activation, and connections between components:

• First of all, a Blackboard pattern requires the existence of data types for the problems to be solved and
the corresponding solutions. It even requires the existence of a well-founded relation between problems
and corresponding subproblems.

• Moreover, a Blackboard pattern requires the existence of two types of components: blackboards and
knowledge sources. Thereby, it requires that blackboard components forward the current state towards
solving the original problem, i.e., they are required to forward currently open subproblems as well as
solutions for already solved subproblems. Knowledge source components, on the other hand, are required
to solve a problem, whenever solutions for all the required subproblems are available. Moreover, they are
also required to communicate their ability to solve an open subproblem, given that solutions for other
subproblems are available.

• To guarantee that a Blackboard architecture indeed solves a given problem, the pattern requires that
a blackboard component is unique and always activated. Moreover, the pattern requires that for every
open subproblem, a knowledge source able to solve this problem is eventually activated.

• Finally, a Blackboard pattern constraints also possible connections between blackboard and knowledge
source components: whenever a knowledge source publishes a solution to an open problem, or subproblems
it requires to solve an open problem, the pattern requires the knowledge source to be connected to the
blackboard component.

A guarantee provided by the Blackboard pattern may be stated as follows: An architecture is guaranteed
to (collaboratively) solve a given problem, even if no knowledge source can solve the problem on its own.
Again, it is a liveness property formalizing a correct solution to the pattern’s addressed design problem.

1.2. Problem: Unverified Patterns

The main problem addressed with the work presented in this paper is that patterns found in current literature
are usually not verified. Figure 5 depicts this situation: it is not clear, whether the architectural constraints
imposed by a pattern indeed lead to the claimed guarantee. There are two possible consequences of this
problem:

• The constraints may be too weak for the guarantee.
• The constraints may be unnecessarily strong for the provided guarantee.

1.2.1. Missing Constraints

If the architectural constraints required by an ADP are too weak to ensure the claimed guarantees, the
pattern may not correctly solve the addressed design problem. Important constraints might be missing and
architectures implementing the pattern may not satisfy the pattern’s guarantees.
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Fig. 6. The use of ADPs for the design of architectures.

To understand why missing design constraints indeed constitute a real problem, let’s look at how ADPs
are usually used for the design of an architecture. The situation is sketched in Fig. 6: When designing an
architecture based on some requirements, ADPs are usually selected based on the problem they solve. The
architecture is then designed according to the constraints imposed by the pattern. If the constraints, however,
do not solve the problem, the corresponding architecture does not correctly solve the problem either, which
might lead to a system which does not fulfill its requirements.

1.2.2. Unnecessary Constraints

Even if the constraints required by an ADP are strong enough to ensure a pattern’s guarantee, not all
constraints may be needed to ensure the pattern’s guarantee. Thus, a pattern’s specification may contain
unnecessary constraints. While this problem is not as severe as the problem of missing constraints mentioned
above, it does also have some undesired consequences: Since architectural design constraints restrict the
design space for an architecture, unnecessary constraints exclude possible designs for an architecture. This
becomes a problem if such an unnecessary constraint excludes an optimal design and requires an architect
to select only a suboptimal architecture for the given requirements.

1.3. Approach

Over the last decade, several so-called architecture description languages (ADLs) emerged to support the for-
mal specification and analysis of software architectures [GR91, LKA+95, All97, GMW00, DVdHT01, FLV06,
HF10]. Some of those even support the specification of dynamic aspects [MK96, ADG98, vOvdLKM00].
These techniques usually specify an architecture using some type of state-machine and the specification is
then analyzed using model-checking techniques.Traditional approaches to address the problems identified
above tried to apply these techniques, developed for the specification and verification of architectures,
to ADPs. Kim and Garlan [KG06], for example, apply the Alloy [Jac02] model checker to automatically
verify architectural styles specified in ACME [Gar03]. First approaches in this area come from some
early attempts to formalize design patterns using UML [MCL04, SH04, ZA05]. A similar approach comes
from Wong et al. [WSWS08] which applies Alloy for the verification of architecture patterns. Zhang et
al. [ZLS+12] applied model checking techniques to verify architectural styles formulated in Wright#, an
extension of Wright [All97]. More recently, Marmsoler and Degenhardt [MD17] apply the NuSMV model
checker [CCGR00] to verify properties of design patterns and Goethel et al. [GJS17] model patterns for
self-adaptive systems using CSP [Hoa78] and use the FDR3 model checker [GRABR14] to analyze them.

Specifications of ADPs, however, have some peculiarities, which limit the applicability of the above
techniques for their specification and verification: (i) Pattern specifications are usually axiomatic, focusing
on a minimal set of constraints (about component behavior or architecture configurations), in order to
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ensure its guarantee. For example, in a Singleton pattern, we don’t care about the concrete implementation
of component activation, as long as it is guaranteed that a component of type singleton is only activated if
no other component of that type is already active. For a Publisher-Subscriber pattern, on the other hand,
we are not interested in the concrete mechanism which implements communication between components, as
long as it is guaranteed that a subscriber component is connected to a publisher, whenever latter sends out
some message for which the former is currently subscribed. Or in a Blackboard pattern, we are not concerned
with how a knowledge source solves a certain problem, as long as it is guaranteed that it solves it somehow.
(ii) Moreover, the specification of a pattern does not necessarily contain a fixed number of components. Rather
it provides upper or lower bounds and sometimes the number might be even unbounded. For example, in a
Publisher-Subscriber pattern, we don’t know the exact number of subscriber components. Or in a Blackboard
pattern, we don’t know the exact number of knowledge source components.

In this study, we propose an approach based on axiomatic specification techniques and interactive theo-
rem proving, to address the problems identified above. Interactive theorem proving supports verification at
an axiomatic level. This allows for the verification of the axiomatic specifications inherent in ADPs. The ad-
ditional effort which comes with interactive theorem proving (compared to automatic verification techniques,
employed in traditional approaches), is justified by the impact of verification results at pattern level: Each
result obtained at the level of ADP applies to every architecture which implements that pattern. Thus, if we
think about how many architectures implement a Singleton or a Publisher-Subscriber pattern, this should
justify the additional effort induced by manual verification approaches.

1.4. Contributions

With our work, we provide the following contributions:

• We developed a language for the formal specification of architectural design constraints and architec-
tural guarantees. To support the formal analysis of such specifications, we provide formal syntax and
semantics for the language in terms of a formal model for dynamic architectures. To support a user in the
development of specifications, we also implemented the language in terms of an Eclipse/EMF application.

• We developed an algorithm to systematically transfer specifications created in our language to a corre-
sponding Isabelle/HOL theory. We showed that the algorithm preserves the semantics of the language
and implemented it in Eclipse/EMF to support the automatic generation of Isabelle/HOL theories for
specifications developed in our Eclipse/EMF application.

• We evaluated the approach by means of four case studies: the Singleton pattern, the Publisher-Subscriber
pattern, the Blackboard pattern, and a pattern for Blockchain architectures.

Thereby, to the best of our knowledge, this is the first attempt to apply in-
teractive theorem proving for the verification of architectural design patterns.

With our research, we contribute to the area of architecture verification and the theory of ADPs. Since,
from a practical point of view, our approach can be used to support the verification of architectures. To this
end, verified patterns take the role of lemmata for the verification: they are verified once and then reused
for the verification of different architectures. The fact that patterns are frequently used for the design of
architectures, makes them good candidates for such lemmata.

From a theoretical point of view, the approach can help to gain more insights into the theory behind
certain patterns. For, formalizing and verifying them, may reveal interesting questions about their nature.
For example, when formalizing the Singleton pattern we were faced with the question whether the single
instance of a component needs to be unique or whether it is allowed to change over time. Or, when verifying
the Blockchain pattern, we discovered a fundamental assumption about the patterns environment, which is
required to ensure proper functioning.

1.5. Outline

In the following, we first introduce a formal model for dynamic architectures which serves as a basis for our
approach. In Sect. 3 we then present techniques to specify ADPs over this model and demonstrate them
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by means of our three running examples. We then present our framework for the interactive verification of
ADPs based on Isabelle/HOL. To this end, we first describe a formalization of our model in Isabelle/HOL.
Then, we propose an algorithm to map a pattern specification to a corresponding Isabelle/HOL theory using
the formalization of the model. Again, we demonstrate each step in terms of our three running examples. In
Sect. 5 we finally integrate all our results into a methodology for the interactive specification and verification
of ADPs. To this end, we also present our Eclipse/EMF-based implementation and a description of the
evaluation of our approach by means of four case studies. Finally, we discuss related work and conclude the
paper with a brief outlook which leads to future work.

2. A Model of Dynamic Architectures

In the following section we summarize our model for dynamic architectures [MG16b, MG16a]. The model
is based on Broy’s Focus theory [Bro10] and its dynamic extension [Bro14]. It assumes a set of ports and
messages to be given, together with a corresponding type function which assigns a set of messages to each
port. Then, it defines the notion of an interface, which consists of a set of input and output ports. It then
introduces the central notion of component type, which extends an interface with a set of so-called component
parameters (formally represented as a set of ports and associated messages) and behavior. Behavior of
component types is modeled in terms of sets of so-called behavior traces, i.e., streams of valuations of
the ports of the component’s interface. Besides component types, the model introduces the concept of an
architecture trace: streams of so-called architecture snapshots, which, in turn, consist of a set of active
components (belonging to some type), connections between their ports, and a valuation of the ports of
active components. An architecture specification is then defined as a set of architecture traces which does
not restrict the behavior of components. Finally, the notion of behavior projection is introduced to extract
the behavior of a certain component out of a given architecture trace. Behavior projection is then used to
define composition of component types under a given architecture specification: the result of composing a set
of component types with an architecture specification is defined to consist of all the architecture traces from
the architecture specification, for which the projection to any component leads to a behavior trace allowed
by the component’s type.

In the following, we first introduce the basic concepts of messages, ports, and interfaces. Then, we describe
two key concepts of our model: component types and architecture specifications. Finally, we introduce the
notion of behavior projection to define composition of component types with architecture specifications. We
conclude with a summary of the introduced concepts and their interrelationships.

2.1. Messages and Ports

In our model, components communicate with each other by exchanging messages over ports. Thus, we assume
the existence of setM, containing all messages, and set P, containing all ports, respectively. Moreover, we
postulate the existence of a type function

T : P → ℘(M) (1)

which assigns a set of messages to each port.

2.2. Port Valuations

Ports are means to exchange messages between a component and its environment. This is achieved through
the notion of port valuation. Roughly speaking, a valuation for a set of ports is an assignment of messages
to each port.

Definition 1 (Port valuation). For a set of ports P ⊆ P, we denote with P the set of all possible, type-
compatible port valuations, formally:

P
def
=

{
µ ∈

(
P → ℘(M)

)
| ∀p ∈ P : µ(p) ⊆ T (p)

}
.

Moreover, we denote by [p1, p2, . . . 7→ M1,M2, . . .] the valuation of ports p1, p2, . . . with sets M1, M2, . . .,
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respectively. For singleton sets we shall sometimes omit the set parentheses and simply write [p1, p2, . . . 7→
m1,m2, . . .] .

In our model, ports may be valuated by sets of messages, meaning that a component can send/receive a set
of messages via each of its ports at each point in time. A component may also send no message at all, in
which case the corresponding port is valuated by the empty set.

2.3. Interfaces

The ports which a component may use to send and receive messages are grouped into so-called interfaces.

Definition 2 (Interface). An interface is a pair (I ,O), consisting of disjoint sets of input ports I ⊆ P
and output ports O ⊆ P. The set of all interfaces is denoted by IFP . For an interface if = (I ,O), we denote
by

• in(if )
def
= I the set of input ports,

• out(if )
def
= O the set of output ports, and

• port(if )
def
= I ∪O the set of all interface ports.

2.4. Streams

In the following, we shall make use of finite as well as infinite streams [BS01]. Thereby, we denote with (E)∗

the set of all finite streams over elements of a given set E, by (E)∞ the set of all infinite streams over E,
and by (E)ω the set of all finite and infinite streams over E. The n-th element of a stream s is denoted with
s(n− 1) and the first element is s(0). Moreover, we shall use the following conventions for streams:

• With 〈〉 we denote the empty stream.
• With e&s we denote the stream resulting from appending stream s to element e.
• With ŝ s′ we denote the concatenation of stream s with stream s′. For the case s is infinite, ŝ s′ = s.
• With rg(s) we denote the set of all elements of a given stream s.
• With #s ∈ N∞ we denote the length of s.

• We use s↓n to extract the first n (excluding the n-th) elements of a stream. Thereby s↓0 def
= 〈〉.

• With s′ v s, we denote that s′ is a prefix of s.

2.5. Component Types

A key concept of our model is the concept of a component type, i.e., a parameterized interface with associated
behavior. The behavior is given in terms of so-called behavior traces, i.e., streams of valuations of the
corresponding interface ports.

Definition 3 (Component type). A component type is a 4-tuple (if ,CP , µ, bhv), consisting of

• an interface if ∈ IFP ,
• so-called component parameters CP ⊆ P which are required to be disjoint from the interface’s input and

output ports,
• a valuation of the component parameters µ ∈ CP ,
• and a set of so-called behavior traces, bhv ⊆ (port(if ))∞.

The set of all possible component types over a set of interfaces I ⊆ IFP is denoted CTI . We shall use
the same notation as introduced for interfaces in Def. 2, to denote input, output, and all interface ports for
component types. Moreover, for a component type (if ,CP , µ, bhv), we denote by

• par(ct)
def
= CP its component parameters,
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ν = ν0, ν1, ν2, . . .

ω = ω0, ω1, ω2, . . .

σ = σ0, σ1, σ2, . . .

δ = δ0, δ1, δ2, . . .

ε = ε0, ε1, ε2, . . .

η = η0, η1, η2, . . .

Fig. 7. Conceptual representation of a component type with component parameter p, valuated by M, and
behavior bhv = {ε, σ, ν, µ, ω, δ, η}.

• val(ct)
def
= µ the valuation of component parameters, and

• bhv(ct)
def
= bhv the behavior of a component type ct = (if ,CP , µ, bhv).

Example 7 (Component type). Assuming P contains ports p, i0, i1, o0, o1. Figure 7 shows a conceptual
representation of a component type (if ,CP , µ, bhv), consisting of:

• Interface if = (I ,O), with

– input ports I = {i0, i1}, and
– output ports O = {o0, o1}.

• Component parameters CP = {p}.
• Parameter valuation µ(p) = M.
• Behavior bhv = {ε, σ, ν, µ, ω, δ, η}, consisting of behavior traces

– ε = ε0, ε1, ε2, . . .

– σ = σ0, σ1, σ2, . . .

– . . .

Component types specify allowed behavior for components of a certain type. Thereby, they introduce
a notion of parametrization as a means to support the specification of groups of related components of a
certain type. Since they are mainly a concept to support the specification of component types, component
parameters are discussed in more detail in the next chapter.

2.6. Architecture Specifications

Component types specify the interface and the allowed behavior for components. However, they do not
say anything about the activation and deactivation of components or their interconnections. Thus, in the
following, we introduce the concept of an architecture specification to address these aspects.

2.6.1. Components

Component types can be instantiated to obtain components of that type. We shall use the same notation as
introduced for component types in Def. 3, to access ports, valuation of component parameters, and behavior
assigned to a component. Note, however, that instantiating a component leads to the notion of component
port, which is a port combined with the corresponding component identifier. Thus, for a family of components
(Cct)ct∈CT over a set of component types CT ⊆ CTI , we denote by:

• in(C) def
=

⋃
c∈C ({c} × in(c)), the set of component input ports,

• out(C) def
=

⋃
c∈C ({c} × out(c)), the set of component output ports,

• port(C) def
= in(C) ∪ out(C), the set of all component ports.
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Moreover, we may lift the typing function (introduced for ports in Sect. 2.1), to corresponding component
ports:

T ((c, p))
def
= T (p) .

Finally, we can generalize our notion of port valuation (Def. 1) for component ports CP ⊆ C ×P to so-called
component port valuations:

CP
def
=

{
µ ∈

(
CP → ℘(M)

)
| ∀cp ∈ CP : µ(cp) ⊆ T (cp)

}
.

To better distinguish between ports and component ports, in the following, we shall use p, q, pi , po, . . . ; to
denote ports and cp, cq , ci , co, . . . ; to denote component ports.

2.6.2. Architecture Snapshots

In our model, an architecture snapshot connects ports of active components.

Definition 4 (Architecture snapshot). An architecture snapshot is a triple (C ′, N, µ), consisting of:

• a set of active components C ′ ⊆ C,
• a connection N : in(C ′)→ ℘(out(C ′)), such that types of connected ports are compatible:

∀ci ∈ in(C ′) :
⋃

co∈N(ci)

T (co) ⊆ T (ci) , and (2)

• a component port valuation µ ∈ port(C ′) .

We require connected ports to be consistent in their valuation, i.e., if a component provides messages at its
output port, these messages are transferred to the corresponding, connected input ports:

∀ci ∈ in(C ′) : N(ci) 6= ∅ =⇒ µ(ci) =
⋃

co∈N(ci)

µ(co) . (3)

Note that Eq. (2) guarantees that Eq. (3) does not violate type restrictions. The set of all possible architecture
snapshots is denoted by ASCT .

For an architecture snapshot as = (C ′, N, µ) ∈ ASCT , we denote by

• CMPas
def
= C ′ the set of active components and with |c|as def⇐⇒ c ∈ C ′, that a component c ∈ C is

active in as,

• CN as
def
= N , its connection, and

• valas
def
= µ, the port valuation.

Moreover, given a component c ∈ C ′, we denote by

cmpcas ∈ port(c)
def
=

(
λp ∈ port(c) : µ

(
(c, p)

))
(4)

the valuation of the component’s ports.

Note that cmpcas is well-defined iff |c|as .
Moreover, note that connection N is modeled as a set-valued function from component input ports to

component output ports, meaning that:

1. input/output ports can be connected to several output/input ports, respectively, and
2. not every input/output port needs to be connected to an output/input port (in which case the connection

returns the empty set).

Moreover, note that by Eq. (3), the valuation of an input port connected to many output ports is defined
to be the union of all the valuations of the corresponding, connected output ports.

Example 8 (Architecture snapshot). Figure 8 shows a conceptual representation of an architecture
snapshot (C ′, N, µ), consisting of:
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c1
o0 = M3

i0 = M4

o1 = M5

o2 = M1

c2 〈q = M2〉
i0 = M1

o0 = M6

i1 = M5

i2 = M3

c3 〈p = M〉
i0 = M2

o0 = M1

i1 = M1

o1 = M3

Fig. 8. Architecture snapshot consisting of three components c1, c2, and c3; a connection between ports (c2, i1)
and (c1, o1), (c2, i2) and (c3, o1), and (c3, i1) and (c1, o2); and valuations of the component parameters and
ports.

• active components C ′ = {c1, c2, c3} with corresponding component types (c3, for example, could be of
the type as described in Ex. 7);

• connection N , defined as follows:

– N((c2, i1)) = {(c1, o1)},
– N((c3, i1)) = {(c1, o2)},
– N((c2, i2)) = {(c3, o1)}, and
– N((c1, i0)) = N((c2, i0)) = N((c3, i0)) = ∅; and

• component port valuation [(c1, o0), (c2, i1), (c3, o1), · · · 7→ M3, M5, M3, · · · ].

2.6.3. Architecture Traces

An architecture trace consists of a series of snapshots of an architecture during system execution. Thus, an
architecture trace is modeled as a stream of architecture snapshots at certain points in time.

Definition 5 (Architecture trace). An architecture trace is an infinite stream t ∈ (ASCT )∞. For an ar-
chitecture trace t ∈ (ASCT )∞ and a component c ∈ C, we denote with

• last(c, t), the greatest i ∈ N, such that |c|t(i),
• c n⇐ t, the last time point less or equal to n at which c was not active in t, i.e., the least n′ ∈ N, such

that n′ = n ∨
(
n′ < n ∧ @n′ ≤

˙
k < n : |c|t(k)

)
,

• c n← t, the latest activation of component c (strictly) before n, and

• c n→ t, the next point in time (after n) at which c is active in t.

Note that c n⇐ t is always well-defined, while c n← t and c n→ t are only well-defined iff there exists at least
one activation of component c in the past (a point in time strictly less than n) or in the future (a point
in time greater or equal to n), respectively. last(c, t), on the other hand, is well-defined iff i) component
c is activated at least once in t: ∃i ∈ N : |c|t(i) and ii) component c is not activated infinitely often, i.e.,
∃n ∈ N : ∀n′ ≥ n : ¬|c|t(n′).

Example 9 (Architecture trace). Figure 9 shows an architecture trace t ∈ (ASCT )∞ with corresponding
architecture snapshots t(0) = k0, t(1) = k1, and t(2) = k2. Architecture snapshot k0, for example, is described
in Ex. 8.

Figure 10 lists some properties derived for the operators introduced for architecture traces in Def. 5.
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c1o0M3

i0M4 o1

M5

o2 M1

c2〈q=M2〉i0M1

o0M6 i1

M5

i2 M3

c3〈p=M〉
i0 M2

o0 M1i1

M1

o1

M3

k0

,

c1o0M4

i0M3 o1

M1

o2 M2

c4i0M2
i1

M1

o0 M3

k1

,

c1o0
M3

i0M2 o1

M4

o2 M1

c4i0M6
i1

M1

o0 M2

c3〈p=M〉
i0 M5

o0 M4i1

M3

o1
M6

k2

,

Fig. 9. The first three architecture snapshots of an architecture trace.

Properties of component activation

|c|t(last(c,t))
[
if ∃i : |c|t(i) and ∃n : ∀n′ > n : ¬|c|t(n′)

]

@n > last(c, t) : |c|t(n)

[
if ∃n′ : ∀n′′ > n′ : ¬|c|t(n′′)

]

c
0⇐ t = 0

|c|t(n−1) =⇒ c
n⇐ t = n

[
if n ≥ 1

]

∀c n⇐ t ≤
˙
n′ < n : ¬|c|t(n′)

c
n⇐ t ≤ n

c
c

n←t→ t = c
n← t

[
if ∃i < n : |c|t(i)

]

c
n→ t > c

n← t
[
if ∃i ≥ n : |c|t(i) and ∃i < n : |c|t(i)

]

c
n→ t ≥ n

[
if ∃i ≥ n : |c|t(i)

]

|c|
t(c

n→t)
[
if ∃i ≥ n : |c|t(i)

]

@n ≤
˙
k < c

n→ t : |c|t(k)

[
if ∃i ≥ n : |c|t(i)

]

|c|t(n) =⇒ c
n→ t = n

c
n→ t ≥ c n⇐ t

[
if ∃i ≥ n : |c|t(i)

]

Fig. 10. Properties of component activation.

2.6.4. Architecture Specifications

Finally, we can define our notion of architecture specification as a set of architecture traces with certain
properties.

Definition 6 (Architecture specification). An architecture specification is a set A ⊆ (ASCT )∞ of archi-
tecture traces, such that it does not restrict the behavior of components:

∀t ∈ A, n ∈ N, µ ∈ out(CMP t(n)) ∃t′ ∈ A : t′↓n= t↓n
∧ CMP t(n) = CMP t′(n) ∧ CN t(n) = CN t′(n) ∧ val t′(n)|out(CMPt(n)) = µ (5)
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t ∈
(
AS CT

)∞

Πc(t)

0 1 2 3 4 5 6

Fig. 11. Conceptual representation of behavior projection.

2.7. Behavior Projection and Composition

Note that an architecture specification does not restrict the behavior of components. A component’s be-
havior, on the other hand, is restricted in the specification of component types. We conclude the section
by introducing the notion of composition as a means to combine a specification of component types with
a corresponding architecture specification. First, however, we introduce the concept of behavior projection,
which is essential for the definition of composition.

2.7.1. Behavior projection

An important concept for our model is the notion of behavior projection. It is used to extract the behavior
of a certain component out of a given architecture trace (Figure 11).

In the following, we provide a co-recursive definition for behavior projection. This allows us to easily
specify the operator also for infinite input traces by following a certain pattern in its specification. Then, we
can use co-induction to reason about behavior projection3.

Definition 7 (Behavior projection). Given an architecture trace t ∈ (ASCT )ω. The behavior projection to
component c ∈ Cct of type ct ∈ CT is denoted by Πc(t) ∈ (port(c))ω and defined by the following equations:

Πc(〈〉) = 〈〉 (6)
|c|as =⇒ Πc(as & t) = cmpcas & Πc(t) (7)
¬|c|as =⇒ Πc(as & t) = Πc(t) (8)(

∀as ∈ rg(t) : ¬|c|as
)

=⇒ Πc(t) = 〈〉 (9)

Note that the structure of the equations provided in Def. 7 ensures productivity [JR97] and hence they
resemble a valid co-recursive definition. Thus, projection is indeed well-defined by those equations.

Example 10 (Behavior projection). Applying behavior projection of component c3 to the architecture
trace described in Ex. 9 results in a behavior trace starting as follows:

[i0, i1, o0, o1 7→ M2, M1, M1, M3], [i0, i1, o0, o1 7→ M5, M3, M4, M6], · · ·
Figure 12 lists some characteristic properties of behavior projection.

2.7.2. Composition

Behavior projection can now be used to define composition of components according to an architecture
specification.

3 Alternatively we could have used traditional recursion, show that behavior projection is continuous, and use fixpoint induc-
tion [GH05] to proof properties about it. The reason to choose co-recursion here is that it simplifies subsequent formalization
in Isabelle/HOL.
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Properties of behavior projection

#Πc(t) ≤ #t

Πc(t) = Πc(t↓n) [if ∀n ≤
˙
n′ ≤ #t : ¬|c|t(n′)]

finite(Πc(t)) ⇐⇒ ∃n ∀n′ > n : ¬|c|t(n′)

t v t′ =⇒ Πc(t) v Πc(t
′)

Πc(t̂ t
′) = Πc(t)̂ Πc(t

′) [if finite(t)]

Πc(t↓n+1) = Πc(t↓n) [if n < #t and ¬|c|t(n)]

Πc(t↓i+1) = Πc(t↓i)̂ cmpct(i) & 〈〉 [if i < #t and |c|t(i)]

Fig. 12. Properties of behavior projection.

t ∈
(
AS CT

)∞

t′ ∈
(
port(c)

)∞

Πc(t) ̂ t
′

0 1 2 3 4 5 6

Fig. 13. Continuations for unfair architecture traces.

Definition 8 (Composition). Composition of a family of components (Cct)ct∈CT with an architecture
specification A ⊆ (ASCT )∞, is defined as follows:

⊗A(C) def
=

{
t ∈ A | ∀ct ∈ CT , c ∈ Cct ∃t′ ⊆ (port(ct))∞ : Πc(t) ̂ t′ ∈ bhv(ct)

}
(10)

Note that the projection to an unfair architecture trace t, i.e., a trace in which a component is activated
only finitely many times, the projection to this component results in only a finite behavior trace. Thus, we
actually search for a valid continuation t′, such that the concatenation for the projection Πc(t) with t′ is a
valid behavior of c. The situation is depicted in Fig. 13: The projection to component c (represented by the
empty rectangle) in architecture trace t, is combined with a possible continuation t′ to obtain an infinite
behavior trace Πc(t) ̂ t′ (shown at the bottom of Fig. 13).

2.8. Summary

Figure 14 summarizes the main concepts of our model and their interrelationships: Messages and ports
(typed by sets of messages) form the basic concepts of the model. A key concept of the model is the notion
of component type which consists of an interface (sets of input and output ports as well as component
parameters) and a behavior in terms of behavior traces (streams of port valuations, i.e., valuations of ports
with messages). Another important concept is the concept of architecture specification: a special set of
architecture traces (streams of architecture snapshots, i.e., states of an architecture during execution). Finally,
the model provides an operator to combine a given architecture specification with a set of component types
and corresponding components. Therefore, the operator uses the concept of behavior projection which extracts
the behavior of a certain component out of a given architecture trace.
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Fig. 14. Concept map summarizing major concepts and their interrelationships.

3. Specifying Architectural Design Patterns

In the previous section, we described a model for dynamic architectures, based on the concept of component
types and architecture specifications. In this section, we introduce techniques to specify ADPs over this model.
The techniques are summarized in Fig. 15: First, data types are specified for the messages exchanged by
the components of an architecture using traditional, algebraic specification techniques [Bro96, Wir90]. Then,
component types are specified on top of these datatypes. To this end, corresponding interfaces are specified for
each type of component using a graphical notation called architecture diagrams. Then, component behavior
is specified over these interfaces using so-called behavior trace assertions, i.e., linear temporal logic formulæ
with ports as free variables. Finally, an architecture specification is given in terms of so-called architecture
trace assertions: linear temporal logic formulæ with component variables and architecture predicates. In
the following, we detail on each of the techniques and demonstrate them by means of our three running
examples: the Singleton, the Publisher-Subscriber, and the Blackboard pattern.

3.1. Specifying Data Types

As a first step, a set of data types is specified for a pattern. Data types are specified in terms of axioms
over a signature and corresponding variables. They can be specified using traditional, algebraic specification
techniques [Bro96, Wir90]. Fig. 16 depicts a schematic example of such an algebraic specification: Each
specification has a name and may be parameterized by several sorts. Moreover, other data type specifications
can by imported by means of their name. Function/predicate symbols are introduced with the corresponding
sorts at the beginning of the specification. Some of the symbols might be declared as generator clauses,
requiring that every element of the corresponding datatype can be “reached” by a term formulated with
these symbols. Finally, a list of variables for the different sorts is defined and a set of axioms is formulated
over the symbols and the variables, to specify a datatype’s characteristic properties.

In the following, we demonstrate datatype specifications using our three running examples. The specifi-
cation of the Singleton pattern does not require any special data types. Data types are required, however,
for the specification of the Publisher-Subscriber pattern as well as the Blackboard pattern.

Example 11 (Datatype specification for the Publisher-Subscriber pattern). In a Publisher-
Subscriber pattern, we usually have two types of messages: subscriptions and unsubscriptions. Figure 17
depicts the corresponding data type specification. Subscriptions are modeled as parametric data types over
two type parameters: a type id for component identifiers and some type evt denoting events to subscribe
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Data Types

- Sorts
- Function/Predicate Symbols
- Characteristic Properties

Component Types

- Interfaces
- Component Behavior

Architecture Constraints

- Components
- Activation Constraints
- Connection Constraints

Algebraic Specifications

- Datatype Variables
- Axioms, Generator Clauses

Architecture Diagrams

- Ports
- Interfaces

Behavior Trace Assertions

- Linear Temporal Formulæ
- Port Variables

Architecture Trace Assertions

- Linear Temporal Formulæ
- Component Variables
- Activation/Connection predicates

Fig. 15. Specifying architectural design patterns.

DTSpec Name(param) imports OtherDatatype
symbol1 : Sort1

symbol2 : Sort1→ Sort2
...
generated by symbol1 , symbol2
...
flex var1 , var2 : Sort1

var3 : Sort2
...
assertion1 (symbol1 , var1 , var2 , var4 )

assertion2 (symbol1 , symbol2 , var1 , var4 )
...

Fig. 16. Schematic algebraic specification for data types.

for. The data type is freely generated by the constructor terms “sub id evt” and “unsub id evt”, meaning
that every element of the type has the form “sub id evt” or “unsub id evt”.

Example 12 (Datatype specification for the Blackboard pattern). Blackboard architectures usu-
ally work with problems and solutions for them. Figure 18 provides a specification of the corresponding
data types. We denote by PROB the set of all problems and by SOL the set of all solutions. Complex prob-
lems consist of subproblems, which can be complex themselves. To solve a problem, its subproblems have

DTSpec subscription(id, evt)
generated by sub id ℘(evt), unsub id ℘(evt)

Fig. 17. Data type specification for the Publisher-Subscriber pattern.
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DTSpec ProbSol imports SET
≺ : PROB× PROB

solve : PROB→ SOL

well-founded(≺) (11)

Fig. 18. Data type specification for the Blackboard pattern.

PSpec Port Specification imports Datatype
port1 : Sort1

port2 : Sort2
...

Fig. 19. Exemplary port specification.

to be solved first. Therefore, we assume the existence of a subproblem relation ≺ ⊆ PROB × PROB. For
complex problems, the details of the relation may not be known in advance. Indeed, one of the benefits of
a Blackboard architecture is that a problem can be solved even without knowing the exact nature of this
relation in advance. However, the subproblem relation has to be well-founded4 (Eq. (11)) for a problem to be
solvable. In particular, we do not allow for cycles in the transitive closure of ≺. While there may be different
approaches to solve a problem (i.e., several ways to split a problem into subproblems), we assume that the
final solution to a problem is always unique. Thus, we assume the existence of a function solve : PROB→ SOL,
which assigns the correct solution to each problem. Note, however, that it is not known in advance how to
compute this function and it is indeed one of the reasons for using this pattern to compute this function.

3.2. Specifying Component Types

On top of the specified data types, a set of component types (as described in Def. 3) is specified for the
pattern. Component types are specified in two steps: First, an interface is specified for them using a graphical
notation called architecture diagrams. Then, constraints about the behavior of components of a certain type
are specified in terms of behavior trace assertions.

3.2.1. Specifying Interfaces

On top of the specified data types, a set of interfaces for the component types (as introduced in Def. 2)
are specified. The specification of interfaces proceeds in two steps: First, a set of port types is specified as a
means to exchange messages of a certain type. Then, interfaces are specified over these port types.

Port specifications. Port types are specified by means of templates, which declare a set of port identifiers
and associate them with sorts from the corresponding datatype specification. Figure 19 shows such a template
which specifies two types of ports: port1 of type Sort1 and port2 of type Sort2, respectively.

Again, we demonstrate port specifications by means of our running examples, and again, the specification
of the Singleton pattern does not require any ports, at all. However, Publisher-Subscriber architectures and
also Blackboard architectures require ports to be specified.

Example 13 (Port specification for the Publisher-Subscriber pattern). Two port types are speci-
fied for the Publisher-Subscriber pattern by the specification given in Fig. 20: a type sb which allows to
exchange subscriptions for specific events and type nt, which allows to exchange messages associated with
a certain event. To this end, it uses a type parameter msg and imports the data type specification for
subscriptions described in Ex. 11.

4 A well-founded relation is a partial order which has no infinite decreasing chains.
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PSpec PSPorts(msg) imports subscription(id, evt)
sb : subscription(id, evt)

nt : evt× msg

Fig. 20. Port specification for the Publisher-Subscriber pattern.

PSpec BBPorts imports ProbSol
rp : PROB× ℘(PROB)

ns, cs : PROB× SOL

op, prob : ℘(PROB)

Fig. 21. Port specification for the Blackboard pattern.

Example 14 (Port specification for the Blackboard pattern). For the specification of the Black-
board pattern we require 4 different types of ports, specified in Fig. 21:

• rp is used to exchange a problem which a knowledge source is able to solve, together with a set of
subproblems the knowledge source requires to be solved first.

• ns is used to exchange an open problem, solved by a knowledge source, together with the corresponding
solution.

• op is used to exchange problems which still need to be solved.
• cs is used to exchange existing solutions for already solved problems.

Since a knowledge source can only solve certain problems, they are parameterized by a corresponding com-
ponent parameter later on. Formally, however, a parameter is just another port, which needs to be specified
accordingly. Thus, we specify an additional port prob in Fig. 21, which is used later on to parametrize
knowledge sources according to the problems they can solve.

Interface specifications. Interfaces consist of a set of input and output ports. Moreover, interface speci-
fications may also specify a set of component parameters. Formally, component parameters are represented
as ports; however, they have a special meaning in the following sense:

• The valuation of component parameters is bound to a concrete component (as required by Def. 3), i.e.,
the valuation does not change over time, compared to valuations of input and output ports.

• For each possible valuation of the component parameters, at least one component is guaranteed to exist
(as required in Sect. 2.6.1). This is not the case for input and output port valuations.

Interfaces are specified over a given port specification, and they are best expressed graphically using so-
called architecture diagrams. Thereby, an interface is represented by a rectangle and consists of two parts: i) A
name followed by a list of component parameters (enclosed between ’〈’ and ’〉’. ii) A set of input and output
ports which are represented by empty and filled circles, respectively. Figure 22 shows a conceptual representa-
tion of an architecture diagram Name, which is based on a port specification “PortSpecification”. It specifies
an interface If1 , which consists of one input port i, one output port o, and a component parameter par .

Diagram Name imports PortSpecification

If1 ⟨par⟩i

o

Fig. 22. Basic architecture diagram.
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Diagram Singleton

Singleton

Fig. 23. Architecture diagram for the Singleton pattern.

Diagram Publisher-Subscriber imports PSPorts

Subscriber

nt sb

Publisher

nt sb

Fig. 24. Architecture diagram for the Publisher-Subscriber pattern.

Besides specifying interfaces for component types, an architecture diagram can also be used to introduce
common activation and connection constraints. For now, however, you can consider them as a simple way
to introduce interfaces. Later on, in Sect. 3.4, we introduce additional notations for architecture diagrams
to make pattern specifications more concise.

In the following, we provide basic interface specifications for all of our running examples.

Example 15 (Interface specification for the Singleton pattern). The architecture diagram depicted
in Fig. 23 specifies interfaces for the Singleton pattern: It consists of a single interface Singleton which does
not require the existence of any special ports.

Example 16 (Interface specification for the Publisher-Subscriber pattern). The architecture dia-
gram depicted in Fig. 24 shows the specification of the interfaces of the two types of components involved in a
Publisher-Subscriber pattern: An interface Publisher is defined with an input port sb to receive subscriptions
and an output port nt to send out notifications. Moreover, an interface Subsciber is defined with an input
port nt receiving notifications and an output port sb to send out subscriptions. Note also that the diagram
imports the specification of ports discussed in Ex. 13.

Example 17 (Interface specification for the Blackboard pattern). The specification of interfaces
for the Blackboard pattern is provided by the architecture diagram depicted in Fig. 25. Again, the diagram
imports the corresponding port specification from Ex. 14. Moreover, it specifies interfaces for blackboards
and knowledge sources.

The blackboard interface is denoted BB and consists of two input ports rp and ns to receive subproblems
for which solutions are required and new solutions to currently open problems, respectively. Moreover, it
specifies two output ports op and cs to communicate currently open problems and solutions for all currently
solved problems, respectively.

The interface for knowledge sources is denoted KS and its specification mirrors the specification of
the blackboard interface: A knowledge source is required to have two input ports op and cs to receive
currently open problems and solutions for all currently solved problems, and two output ports rp and ns
to communicate required subproblems and new solutions. Note that each knowledge source can only solve
certain problems, which is why a knowledge source is parameterized by a set of problems prob it is able to
solve.

3.2.2. Specifying Behavioral Constraints

We conclude the specification of component types by assigning constraints about component behavior to each
interface. These constraints are expressed in terms of so-called behavior trace assertions. In the following, we
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Diagram Blackboard imports BBPorts

KS 〈prob〉

op cs rp ns

BB

op cs rp ns

Fig. 25. Architecture diagram for the Blackboard pattern.

BSpec Name for iface of ispec
flex aDt1 : Sort1
rig aDt2 : Sort1
...
assertion1 (iface, aDt1, aDt2)

assertion2 (iface, aDt1, aDt2)
...

Fig. 26. Schematic component type specification.

introduce behavior trace assertions informally and demonstrate them by means of our Blackboard example.
However, in App. A, we provide also a formal definition of the syntax and semantics of behavior trace
assertions.

Behavior trace assertions. Behavior trace assertions are a means to specify a component’s behavior in
terms of behavior traces introduced in Def. 3. They are formulated by means of first-order linear temporal
logic formulæ [MP92] over datatype variables and behavior assertions.

Behavior trace assertions may be specified over variables for messages. Thereby, variables are typed by
the sorts of the pattern’s datatype specification and we distinguish two types of variables: rigid and flexible
datatype variables. While rigid variables are only interpreted once, flexible variables are newly interpreted
at each point in time.

Roughly speaking, behavior assertions are predicates specified over a set of datatype variables and a set
of ports, with terms consisting of:

• Datatype variables as well as the ports and parameters of a component type’s interface.
• Function and predicate symbols of the corresponding data type specification.

They specify the state of a component (in terms of valuations of input and output ports) during execution.

Component type specifications. Component types are specified using templates as shown in Fig. 26.
The specification has a name and is associated with an interface of a corresponding interface specification.
Then, a set of flexible and rigid variables for different sorts are declared. A component type specification
concludes with a list of behavior trace assertions, formulated over the ports of the corresponding interface
and the introduced data type variables.

In the following, we demonstrate component type specifications in terms of our running examples. How-
ever, since the Singleton pattern and the Publisher-Subscriber pattern do not pose any constraints on the
behavior of components, we only provide behavior specifications for the two types of components involved
in a Blackboard pattern.

Example 18 (Behavioral constraints for blackboard components). A blackboard provides the cur-
rent state towards solving the original problem and forwards problems and solutions from knowledge sources.
Fig. 27 provides a specification of the blackboard’s behavior in terms of three behavior trace assertions:

• If a solution s′ to a subproblem p′ is received on its input port ns, then it is eventually provided at its
output port cs (Eq. 12).
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BSpec Blackboard for BB of Blackboard
flex p : PROB

P : PROB SET
rig p′ : PROB

s′ : SOL

�
(

(p′, s′) ∈ ns −→♦((p′, s′) ∈ cs
))

(12)

�
(

(p, P ) ∈ rp −→
(
∀p′ ∈ P : (♦(p′ ∈ op))

))
(13)

�
(
p′ ∈ op −→

(
p′ ∈ op W (p′, solve(p′)) ∈ ns

))
(14)

Fig. 27. Specification of behavior for blackboard components.

BSpec Knowledge Source for KS 〈prob〉 of Blackboard
flex p, q : PROB

P : ℘(PROB)
rig p′, q′ : PROB

�
(
∀(p′, P )∈rp :

(
(∀q′∈P : ♦(q′, solve(q′))∈cs)−→♦(p′, solve(p′))∈ns

))
(15)

�
(
∀(p, P ) ∈ rp : ∀q ∈ P : q ≺ p

)
(16)

�
(

prob ∈ op −→♦(∃P : (prob, P ) ∈ rp)
)

(17)

Fig. 28. Specification of behavior for knowledge source components.

• If it gets notified that solutions for subproblems P are required to solve a certain problem p on its input
port rp, these problems are eventually provided at its output port op (Eq. (13)).

• A problem p′ is provided at its output port op, as long as it is not solved (Eq. (14)).

Note that the last assertion (Eq. (14)) is formulated using a weak until operator which is defined as follows:
γ′ W γ

def
= �(γ′) ∨ (γ′ U γ).

Example 19 (Behavioral constraints for knowledge source components). A knowledge source re-
ceives open problems and solutions for already solved problems. It might contribute to the solution of the
original problem by solving currently open subproblems. Fig. 28 provides a specification of knowledge source
behavior in terms of three behavior trace assertions:

• If a knowledge source requires some subproblems P to be solved, in order to solve a problem p′ and it gets
solutions for all these subproblems q′ on its input port cs, then it eventually solves the original problem
p′ and provides the solution through its output port ns (Eq. (15)).

• To solve a problem p, a knowledge source requires solutions only for smaller problems q (Eq. (16)).
• A knowledge source will eventually communicate its ability to solve an open problem via its output port

rp (Eq. (17)).

3.3. Specifying Architectural Constraints

As the last step, a set of constraints about the activation and deactivation of components as well as constraints
about connections between component ports are specified. Both types of constraints may be expressed in
terms of architecture trace assertions, i.e, first-order linear temporal logic formulæ [MP92] over datatype
variables (introduced in the description of behavior trace assertions above), component variables, and ar-
chitecture assertions. A formal description of the syntax and semantics of architecture trace assertions is
provided in App. B.
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ASpec Name for ifSpec
flex aDt1 : Sort1

aCmp1 : If1
rig aDt2 : Sort1

aCmp2 : If1

assertion1 (aDt1, aDt2, aCmp1, aCmp2)

assertion2 (aDt1, aDt2, aCmp1, aCmp2)

Fig. 29. Exemplary architecture constraint specification.

3.3.1. Component Variables

Component variables are typed by component types and may be interpreted by corresponding components.
Similar to datatype variables, component variables can be classified into flexible and rigid, depending on
whether they are newly interpreted at each point in time or whether they keep their value. Since compo-
nent types may be parameterized, variables are assumed to be available for each possible valuation of the
parameters. For example, a component variable declaration x for component type X〈bool〉 would induce two
component variables x〈true〉 and x〈false〉, which can be interpreted by components where parameter bool is
valuated with the interpretations of true and false, respectively. Note that such parameterized component
variables are only feasible since the semantics of a FACTum specification requires the existence of at least
one component for each different valuation of a component type’s parameters (as discussed in Sect. 3.2.1).

3.3.2. Architecture Assertions

Architecture assertions are predicates to specify snapshots of an architecture during execution (as described in
Def. 4). Roughly speaking, they are predicate-logic formulæ specified over datatype and component variables,
with terms consisting of:

• Datatype variables as well as component ports and component parameters, i.e., ports or parameters
combined with corresponding component variables.

• Function and predicate symbols of the corresponding data type specification.

Moreover, several pre-defined, architectural predicates may be used for the formulation of architecture asser-
tions:

• c = c′ denotes equality of two components c and c′,
• ĉ.p denotes that a component c is currently sending/receiving a message over port p,
• c denotes that a component c is currently active, and
• c.p c′.p′ denotes that input port p of component c is connected to output port p′ of component c′.

3.3.3. Architecture Constraint Specification

Architectural constraints can be specified by means of specification templates (Fig. 29). Each template has a
name and is based on a corresponding interface specification. Then, a list of flexible and rigid variables for the
data types and components are defined. Finally, a list of architecture trace assertions is formulated over the
variables. Note that the semantics of architecture constraint specifications is given in terms of architecture
specifications as described in Chap. 2. Thus, they can only be used to specify component activation and
reconfiguration and not to restrict the behavior of components.

In the following, we provide architecture constraint specifications for all three running examples.

Example 20 (Architectural constraints for the Singleton pattern). Architectural constraints for
the Singleton pattern are formalized by the specification depicted in Fig. 30. The specification requires
two constraints for the activation of components: Eq. 18 requires that at each point in time there exists a
singleton component c which is activated. Eq. 19 further asserts that there exists a unique component c′,
such that every active component c of type singleton is equal to c′ at every point in time. In our version
of the singleton, we require that the singleton component is not allowed to change over time. This is why
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ASpec Singleton for Singleton
flex c : Singleton
rig c′ : Singleton

�
(
∃c : c

)
(18)

∃c′ :
(
�
(
∀c : ( c −→ c = c′)

))
(19)

Fig. 30. Activation constraints for a Singleton pattern.

ASpec Publisher-Subscriber for Publisher-Subscriber
flex s : Subscriber

p : Publisher
m : msg
E : ℘(evt)

rig s′ : Subscriber
e : evt

�
(
p ∧ s ∧ ŝ.sb −→ p.sb s.sb

)
(20)

�

(
s′ ∧

(
∃E : sub s′ E ∈ s′.sb ∧ e ∈ E

)

−→
((
p ∧ s′ ∧ (e,m) ∈ p.nt −→ s′.nt p.nt

)

W
(
s′ ∧ (∃E : unsub s′ E ∈ s′.sb ∧ e ∈ E)

))
)

(21)

Fig. 31. Architectural constraints for the Publisher-Subscriber pattern (in addition to the ones specified for
the Singleton pattern).

variable c′ is declared to be rigid in Fig. 30. Indeed, other versions of the singleton are possible in which the
singleton may change over time.

Example 21 (Architectural constraints for the Publisher-Subscriber pattern). Activation con-
straints for the publisher component of a Publisher-Subscriber pattern are similar to the ones specified
for the Singleton pattern in Fig. 30. Moreover, a Publisher-Subscriber pattern requires two additional
constraints, regarding the connections between publisher and subscriber components, which are specified in
Fig. 31:

• With Eq. (20), we require that a publishers sb port is always connected to a subscribers sb port, whenever
both of them are active.

• With Eq. (21), we require that port nt of a subscriber s′ is always connected to a publishers nt port,
whenever the publisher sends out a message associated to an event e for which s′ is subscribed.

Example 22 (Architectural constraints for the Blackboard pattern). Also for the Blackboard pat-
tern, we get similar activation constraints for blackboard components as the ones specified for the Singleton
pattern in Fig. 30. Moreover, the Blackboard pattern requires similar connection constraints as required for
the Publisher-Subscriber pattern in Fig. 31. Thereby, port rp of the Blackboard pattern corresponds to port
sb and port cs of the Blackboard pattern to port nt.

In addition, Fig. 32 provides two connection constraints and three activation constraints for Blackboard
architectures:

• By Eq. (22), we require that a blackboard’s op port is always connected to a knowledge source’s op port,
whenever both of them are active.
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ASpec Blackboard for Blackboard
flex ks : KS 〈prob〉

bb : BB
p : PROB
s : SOL
P : ℘(PROB)

rig ks ′ : KS 〈prob〉
p′ : PROB

�
(

ks ∧ bb ∧ b̂b.op −→ ks.op  bb.op
)

(22)

�
(

bb ∧ ks ∧ k̂s.ns −→ bb.ns  ks.ns
)

(23)

�
(

ks ′ −→�
(♦ ks ′

))
(24)

�
(

ks ′ ∧ (p, P ) ∈ ks ′.rp ∧ p′ ∈ P

−→�
(
(∃bb : bb ∧ (p′, s) ∈ bb.cs) −→ ks ′ )

))
(25)

�
(
∀p′ ∈ bb.op : ♦(∃ks〈prob=p′〉 : ks

))
(26)

Fig. 32. Specification of constraints for Blackboard architectures.

• By Eq. (23), we require that a blackboard’s ns port is always connected to a knowledge source’s ns port,
whenever both of them are active.

• By Eq. (24), we require a fairness condition for the activation of already activated knowledge sources.
• By Eq. (25), we require that whenever a knowledge source offers to solve some problem p, given that

it receives solutions for corresponding subproblems P , then the knowledge source is activated, whenever
solutions for any of the problems of P are provided.

• By Eq. (26), we require that for each open problem p′, a knowledge source ks which is able to solve p′ is
eventually activated.

Note expression ∃ks〈prob=p′〉 : ks of Eq. (26) which demonstrates the use of parameterized component vari-
ables. Indeed, the variable ks〈prob=p′〉 represents a knowledge source component which has its parameter
“prob” valuated with the problem represented by datatype variable p′. Such parameterized variables provide
a convenient way to specify constraints about components of parameterized component types.

3.4. Architecture Diagrams

So far, we introduced basic techniques to specify ADPs. We also applied the techniques to specify versions
of three, well-known, ADPs: the Singleton, the Publisher-Subscriber, and the Blackboard pattern.

Specifying these patterns, however, led to two further observations:
1. Some architectural constraints are common to different ADPs. One example is the constraint that

components of a certain type are required to be always activated. Another example is that components of a
certain type are connected via certain ports, whenever they are activated.

2. Another observation is that, sometimes, pattern specifications reuse specifications from other patterns.
For example, the specification of the Publisher-Subscriber pattern reused the activation specification from the
Singleton pattern for the publisher component. Or the Blackboard pattern reused the complete specification
of the Publisher-Subscriber pattern.

Building on these observations, in the following section, we extend our specification approach with two
features which turn out to be useful for the specification of patterns:

1. To facilitate the specification of common activation and connection constraints, we extend our notion
of architecture diagram (introduced for the specification of interfaces in Sect. 3.2.1) with so-called activa-
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CT 〈P 〉
[c〈ω〉: γ(c),γ

′(c)]i0

o1

Fig. 33. Activation annotation for a component type CT 〈P 〉 with minimal activation condition γ(c) and
deactivation condition γ′(c).

CT 〈P 〉
Jc〈ω〉 : γ(c),γ′(c)Ki0

o1

Fig. 34. Rigid activation annotation for a component type CT 〈P 〉, with activation condition γ(c) and deac-
tivation condition γ′(c).

tion/connection annotations. These annotations provide a convenient way to express certain architectural
constraints graphically by annotating the given architecture diagram.

2. To support hierarchical pattern specifications, we introduce the notion of pattern instantiations, which
allow to import a pattern specification from within another pattern specification and instantiate the corre-
sponding component types. Therefore, we provide additional annotations for architecture diagrams, which
allow to easily express such instantiations in a graphical manner.
Again, the different techniques are demonstrated in terms of our three running examples.

3.4.1. Activation Annotations

Activation annotations enhance an architecture diagram with constraints regarding the activation and deac-
tivation of components. They are expressed by annotating component types with corresponding architecture
assertions, determining situations in which components of the annotated type are required to be activated or
deactivated. Fig. 33, for example, depicts an activation annotation for a component type CT , parameterized
by a parameter P . The annotation is enclosed between square brackets and takes a variable c of a component
of type CT , with parameter valuation ω, as input. It then specifies two architecture assertions using variable
c: γ(c) determines situations in which the component is required to be activated, while γ′(c) determines a
situation in which the component is required to be deactivated. For the case neither γ(c) nor γ′(c) holds,
c may be either active or not. If omitted, we assume default values true and false, respectively. To specify
only the first parameter and leave the default value for the other one, we write bc〈ω〉 : γ(c)c. Similarly, we
write dc〈ω〉 : γ(c)e to only specify the second parameter and leave the default value for the other one.

Activation annotations, as described so far, specify the activation/deactivation of components of a certain
type. However, they do not say anything about the identity of these components. The annotation in Fig. 33,
for example, allows c to be a different component at different points in time. To require that the identity
of the components does not change over time, we need a stronger notion of activation annotation. We call
it rigid activation annotation, and it is expressed using double square brackets, instead of single square
brackets. Fig. 34, for example, depicts an activation annotation, similar to the one presented in Fig. 33.
However, since we use double square brackets, it is to be interpreted as a rigid activation annotation and
variable c is not allowed to change over time. Similar as for activation annotations we take true and false as
default values and write |bc : γ(c)c| and |dc : γ(c)e| to take the default values for the second and first condition
only.

Using activation annotations, we can now specify the Singleton pattern more concisely by adapting the
architecture diagram presented in Fig. 23.

Example 23 (Annotations for the Singleton pattern). Figure 35 depicts the adapted architecture di-
agram for Singletons. The first condition requires that a singleton is always activated. The second condition,
on the other hand, requires that, whenever a singleton is activated, it is the only component of that type
which is active. Since we do not want singletons to change over time, we enclose the conditions in double
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Diagram Singleton

Singleton
Js:true,∀s′:‖s′‖−→s′=sK

Fig. 35. Annotated architecture diagram for the Singleton pattern.

CT1 〈P 〉 i CT2 〈P ′〉o

[
c〈ω〉, c

′
〈ω′〉 : γ(c,c′),γ′(c,c′)

]

Fig. 36. Connection annotation for connections between port i of component type CT1 〈P 〉 and port o of
component type CT2 〈P ′〉 with connection condition γ(c, c′) and disconnection condition γ′(c, c′).

square brackets, making it a rigid activation annotation. Note that the activation specification presented in
Fig. 30 becomes now superfluous, since the new architecture diagram contains the complete specification of
the Singleton pattern.

3.4.2. Connection Annotations

Connection annotations enhance an architecture diagram with constraints regarding the connection of certain
components. Such annotations are added to each type-consistent pair of input and output ports of component
types and specify conditions under which the corresponding ports of components of these types are required
to be connected or disconnected. Figure 36, for example, depicts a connection annotation for ports i and o
of component types CT1 and CT2 , respectively. The annotation takes two component variables, c and c′, as
input and specifies two architecture assertions, γ(c, c′) and γ′(c, c′), over these variables: γ(c, c′) determines
situations in which the connection is required to be established, while γ′(c, c′) determines a situation in which
a connection is not allowed. For the case neither γ(c, c′) nor γ′(c, c′) holds, the connection may be established
or not. Again, we assume default values of true and false, and we may omit one of the conditions in order
to take its default value. Also for connection annotations we may require components not to change over
time, which is why we also introduce the notion of rigid connection annotation. Similar as for rigid activation
annotations, we mark connection annotations as rigid by enclosing them into double square brackets, instead
of single square brackets.

In the following, we demonstrate the use of connection annotations in terms of the examples introduced
above.

Example 24 (Annotations for the Publisher-Subscriber pattern). We first adapt the architecture
diagram for the Publisher-Subscriber pattern introduced in Fig. 24. The resulting architecture diagram
is depicted in Fig. 37. We require a similar activation annotation for a publisher component as the one
introduced for singletons. To increase readability, however, the annotation uses abbreviations γ and γ′, which
are expanded at the bottom of the diagram. Moreover, we add a connection annotation, which requires port
sb of a publisher component to be connected to port sb of a subscriber component, whenever the subscriber
sends out some message. The dashed line, without any annotation, denotes a connection constraint using the
default values for connections and deconnections. Indeed the line could have been omitted and the semantic
would not change. However, it is put there to highlight the fact that there is an additional connection
constraint specified as architecture trace assertion in Eq. (21). The new architecture diagram allows us now
to get rid of some of the architectural assertions introduced in Ex. 21. Indeed, the only remaining assertion
is Eq. (21), which cannot be replaced with any annotation so far. Note that the connection annotation used
in this example is used frequently which is why, from now one, we shall use a solid connection between ports
to denote that the corresponding ports are required to be connected, whenever the output port is valuated
with some message.
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Diagram Publisher-Subscriber

Subscriber

nt sb

Publisher
Jp: γ(p),γ′(p)K

nt sb

bp,s: ŝ.sbc

γ(p) = true

γ′(p) = ∀p′:‖p′‖−→p′=p

Fig. 37. Annotated architecture diagram for the Publisher-Subscriber pattern.

Diagram Blackboard

KS 〈prob〉

op cs rp ns

BB
Jbb:γ(bb),γ′(bb)K

op cs rp ns

γ(bb) = true

γ′(bb) = ∀bb′:‖bb′‖−→bb′=bb

Fig. 38. Annotated architecture diagram for the Blackboard pattern.

Example 25 (Annotations for the Blackboard pattern). Next, we adapt the architecture diagram for
the Blackboard pattern as introduced in Fig. 25. The resulting architecture diagram is depicted in Fig. 38.
Again, we add a similar annotation as the one required for singletons to the blackboard component type.
Moreover, we add three connection annotations: the three solid lines between the ports of blackboard and
knowledge source components use the new notation, introduced in the last example, to denote a required
connection between the corresponding ports, whenever the output port sends out a message. The architec-
ture diagram now subsumes the two connection assertions Eq. (22) and Eq. (23) specified for Blackboard
architectures in Fig. 32. What remains are the activation assertions Eq. (24), Eq. (25), and Eq. (26), as well
as the connection assertion formulated by Eq. (21).

3.4.3. Specifying Pattern Instantiations

As described above, pattern specifications may be built on top of other pattern specifications by instantiating
their component types. Instantiating a pattern requires to provide a mapping which relates component types
and port types. Such instantiations can be directly specified in a pattern’s architecture diagram by annotating
the corresponding interfaces.

Figure 39 depicts a schematic pattern instantiation. The diagram specifies a pattern PatternB and thereby
instantiates another, existing specification PatternA, which is assumed to specify a component type CT1
with one single input port i and one single output port o. PatternB specifies one component type CT2
which is declared to be an instance of component type CT1 of PatternA. Since CT1 has two ports, the
instantiation must provide mappings for these two ports, which is done in square brackets right after the
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Diagram PatternA

CT1i o

Diagram PatternB
import PatternA

CT2 :
CT1 [i,o 7→i1,o1]

i1 o1

i2

o2

Fig. 39. Architecture diagram in which component type CT1 of PatternB instantiates component type CT1
of a pattern PatternA.

Diagram Publisher-Subscriber
import Singleton

Subscriber

nt sb

Publisher :
Singleton

nt sb

(a) Without inherited annotations.

Diagram Publisher-Subscriber
import Singleton

Subscriber

nt sb

Publisher:
Singleton

Jp: γ(p),γ′(p)K

nt sb

γ(p) = true

γ′(p) = ∀p′:‖p′‖−→p′=p

(b) With inherited annotations.

Fig. 40. Architecture diagrams for the Publisher-Subscriber pattern instantiating the Singleton pattern.

name of the instantiated component type. In our case, port i of component type CT1 is mapped to input
port i1 and o to output port o1 . Note that the interface of CT2 has two additional ports i2 and o2, which
do not instantiate any port of interface CT1 . Indeed, a port mapping is not required to be bijective, which
means that a component type may add more ports to the interface of the component type it instantiates.
However, we do require that the types of the ports refine the types of the port of the instantiated component
type. For our example, that means the type of port i1 must be a refined version of the type of i and the type
of o1 must refine the type of o.

In the following, we demonstrate hierarchical specifications in terms of our running examples.

Example 26 (Publisher-Subscriber instantiating the Singleton pattern). First, we adapt the spec-
ification of the Publisher-Subscriber pattern, introduced above, such that a publisher component is consid-
ered to be an instance of the singleton type. Figure 40 depicts the adapted architecture diagrams, excluding
(Fig. 40a) and including (Fig. 40b) annotations inherited from the imported Singleton pattern. The diagram
first imports the specification of the Singleton. Then it declares the publisher component type to be an
instance of a singleton component type from the Singleton pattern.

By instantiating the singleton, the publisher will inherit all its specified properties, i.e., an adapted version
of the activation annotation specified for the Singleton will be available for publisher components. Thus, we
could simplify the remaining assertion for Publisher-Subscriber patterns and we are left with a simplified
version of Eq. (21) for the final specification of the pattern (in addition to the diagram depicted in Fig. 40).

Example 27 (Blackboard pattern instantiating the Publisher-Subscriber pattern). Finally, we
model a Blackboard pattern as an instance of the Publisher-Subscriber pattern. Thereby, the blackboard
is specified to be an instance of the publisher type, and knowledge sources instances of subscriber compo-
nents, respectively. Figure 41 depicts the adapted architecture diagrams, excluding (Fig. 41a) and including
(Fig. 41b) annotations inherited from the imported Publisher-Subscriber pattern. Again, the diagram im-
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Diagram Blackboard
import Publisher-Subscriber

KS 〈prob〉:
Subs.[sb,nt7→rp,cs]

op cs rp ns

BB :
Publ.[sb,nt7→rp,cs]

op cs rp ns

(a) Without inherited annotations.

Diagram Blackboard
import Publisher-Subscriber

KS 〈prob〉:
Subs.[sb,nt 7→rp,cs]

op cs rp ns

BB :
Publ.[sb,nt 7→rp,cs]

Jp: γ(p),γ′(p)K

op cs rp ns

γ(p) = true

γ′(p) = ∀p′:‖p′‖−→p′=p

(b) With inherited annotations.

Fig. 41. Architecture diagrams for the Blackboard pattern instantiating the Publisher-Subscriber pattern.

ports the specification of the Publisher-Subscriber pattern and declares a blackboard to be an instance of
a publisher and a knowledge source to be an instance of a subscriber. However, since publisher as well as
subscriber interfaces have ports, we need to provide an additional port-mapping which maps every port of
a publisher/subscriber to a corresponding port of a blackboard/knowledge source. Note also that a black-
board/knowledge source adds two additional ports which do not map to any of the ports of the Publisher-
Subscriber pattern.

Again, by instantiating the Publisher-Subscriber pattern, the Blackboard will inherit the specification
of the Publisher-Subscriber pattern. Thereby, the properties are adapted as specified by the instantiation,
i.e., publisher components will become blackboard components and subscriber components will become
knowledge sources in the specified properties. In addition, inherited properties will be propagated as well,
which means that the Blackboard will even inherit the properties of the Singleton, since the publisher
component instantiates the Singleton. Thus, the final specification of the Blackboard pattern will only require
three activation assertions (in addition to the diagram depicted in Fig. 41), specified by Eq. (24), Eq. (25), and
Eq. (26). Note that the specification of these properties (as provided in Fig. 32) allows bb to be flexible which,
at a first glance, might seem to contradict the requirement of uniqueness of a blackboard component inherited
from the Singleton. However, while flexible variables may indeed be interpreted by different components over
time, these components are not required to be different. Thus, for a model in which only one component of
a certain type exists, a flexible variable of that type will always be interpreted by that component.

3.5. Summary

Table 1 summarizes techniques for the specification of ADPs described in this section. For each technique, it
lists the specified elements, the corresponding architectural concept, and the type of specification technique.

4. Interactive Pattern Verification in Isabelle/HOL

In the previous sections, we presented a model for dynamic architectures (Sect. 2) and techniques to specify
ADPs over this model (Sect. 3). ADPs can then be verified by proving guarantees for them from such
specifications. Until now, however, verification relies on traditional “pencil and paper” proofs, which are not
guaranteed to be sound. To address this problem, we integrated our approach with the interactive theorem
prover Isabelle/HOL [NPW02].

The integration is shown in Fig. 42: First, we formalized our model for dynamic architectures (presented in
Sect. 2) in Isabelle/HOL. The corresponding theory Configuration_Traces.thy is available in the Archive
of Formal Proofs as entry DynamicArchitectures [Mar17a]. It uses Lochbihler’s formalization of coinductive
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Specification Elements Concepts from Sect. 2 Type

Algebraic Data Types Datatype Variables
Axioms
Generator Clauses

Messages (Sect. 2.1) Template

Port Specifications Port Types Ports and Type Function (Sect. 2.1) Template

Architecture Diagrams Interfaces Interfaces (Sect. 2.3) Graphical

Activation Annotations Upper Bounds
Lower Bounds

Component Activation (Sect. 2.6) Annotation

Connection Annotations Upper Bounds
Lower Bounds

Port Connections (Sect. 2.6) Annotation

Behavior Trace Assertions Datatype Variables∗
Behavior Assertions

Component Types (Sect. 2.5) Template

Architecture Trace Assertions Datatype Variables∗
Component Variables∗
Architecture Assertions

Architecture Specification (Sect. 2.6) Template

∗ flexible vs. rigid

Table 1. Summary of specification techniques for ADPs.

Model

- Architecture Traces
- Architecture Trace Assertions

Configuration Traces.thy

Locale

dynamic component

- tCMP

- active

- Projection

- Behavior Trace Assertions

Pattern

- Specify Datatypes

Pattern.thy

Locale

pattern

- Add Parameters

for each Port Type

- Specify Behavior

- Specify Activations

and Connections

- Create Theorems

for Guarantees

- Proof Theorems

to Verify Pattern

theory

import

parameter

instantiations

specification

operators

Coinductive Lists

Coinductive List.thy

Fig. 42. Overview of verification approach.

lists [Loc10] to formalize the notion of architecture traces and architecture trace assertions. Moreover, it
introduces an Isabelle locale [Bal04] dynamic_component, which requires two parameters: a function tCMP,
to extract a snapshot of a component from an architecture snapshot, and a function active, to assert whether a
certain component is active in an architecture snapshot. Then, it introduces several definitions for the locale,
reflecting the definitions presented in Sect. 2. To verify a pattern, one may create an Isabelle/HOL theory
which imports our model. The pattern theory contains Isabelle datatype specifications for each FACTum
datatype specification. Moreover, it contains an Isabelle locale with parameters for all port types of all
component types involved in the pattern and assumptions for all constraints imposed by the pattern. Finally,
a pattern guarantee is specified in terms of an Isabelle/HOL theorem and proved from the assumptions using
Isabelle’s structured proof language Isabelle/Isar [Wen07].

In the following, we detail on each of the steps of our verification approach: First, we describe the
formalization of our model in more detail. Then, we show how a FACTum specification can be mapped
to a corresponding Isabelle/HOL theory over the model and demonstrate it in terms of our three running
examples. Finally, we discuss how a FACTum specification can be verified in Isabelle/HOL and demonstrate
it in terms of our examples.
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codatatype (lset : ′a) llist =
lnull : LNil
| LCons (lhd : ′a) (ltl : ′a llist)

for
map: lmap
rel : llist-all2

where
lhd LNil = undefined
| ltl LNil = LNil

Fig. 43. Formalization of lazy lists in Isabelle/HOL (excerpt from [Loc10]).

4.1. Formalizing Architecture Traces

Since our formalization is based on coinductive lists, we first summarize their formalization in Isabelle. Then,
we demonstrate our formalization of the model presented in Sect. 2 using coinductive lists.

4.1.1. Coinductive Lists

To deal with possibly infinite architecture traces, our formalization is based on Lochbihler’s theory of
coinductive (lazy) lists [Loc10]. Lazy lists are formalized using Isabelle/HOL’s notion of coinductive
datatypes [BHL+14]. Figure 43 depicts the corresponding Isabelle/HOL fragment: Besides introducing the
codatatype itself, the declaration also introduces some auxiliary constants:

• Destructors LNil and LCons.
• Discriminator lnull , to test whether a list is empty.
• Selectors lhd and ltl , to select the first element of a given list and the remaining tail, respectively.
• Set function lset , which returns a (possibly infinite) set containing all the elements of a given list.
• Map function map, to apply a given function to each element of a certain list.
• Relator rel , to compare two lists based on their elements.

The where clause at the end of the command specifies a default value for selectors lhd and ltl , applied to
LNil , on which they are not a priori specified.

In addition, Lochbihler’s theory introduces several definitions for lazy lists, of which the following are
most relevant for our purpose:

inf-llist converts a function with domain of natural numbers to a corresponding infinite list.
llength returns the (possibly infinite) length of a list.
lnth returns the n-th element of a list.
lappend concatenates two lists.
lfilter extracts a sublist which contains only elements characterized by a given predicate.
ltake returns a prefix of a certain length of a given list.

Since lfilter and ltake are of particular importance to our theory, we discuss them in more detail.

Lazy filter function. The lfilter function is important, since it forms the foundation for our formalization
of the behavior projection operator. The function takes a predicate P and a lazy list xs and returns a sublist,
containing only those elements of xs for which P holds. Its definition is provided in Fig. 44: It is formalized as
a recursive function based on fixpoints in complete-partial-orders. Note that the definition does not require
any termination proof (which would indeed not be possible, in general, since we are talking about infinite
lists). Rather, to guarantee the existence of a fixpoint, the definition must ensure that the induced functional
is monotonic w.r.t. the prefix order for lazy lists.

Lazy take function. Another important function is the ltake function, since it is used to formalize our
notion of number of activations of a component in a architecture trace. The function takes an extended
natural number n (including ∞) and a lazy list xs, and returns a sublist, containing the first n elements of

32



partial-function (llist) lfilter :: ′a llist ⇒ ′a llist
where lfilter xs = (case xs of LNil ⇒ LNil

| LCons x xs ′ ⇒ if P x then LCons x (lfilter xs ′) else lfilter xs ′)

Fig. 44. Formalization of lazy filter function in Isabelle/HOL (excerpt from [Loc10]).

primcorec ltake :: enat ⇒ ′a llist ⇒ ′a llist
where
n = 0 ∨ lnull xs =⇒ lnull (ltake n xs)
| lhd (ltake n xs) = lhd xs

| ltl (ltake n xs) = ltake (epred n) (ltl xs)

Fig. 45. Formalization of lazy take function in Isabelle/HOL (excerpt from [Loc10]).

xs. Figure 45 depicts its formalization in Isabelle/HOL: It is formalized as a primitive corecursive function,
in which the syntactic structure of the definition ensures productivity (and thus well-definedness) of the
function.

4.1.2. Formalizing Architecture Traces

In the following, we describe a possible formalization of the model presented in Sect. 2 using coinductive
lists. The following Isabelle/HOL snippet depicts the foundation of our formalization:
typedecl cnf
type-synonym trace = nat ⇒ cnf
consts arch:: trace set

First, we introduce a type constant cnf, which represents an architecture snapshot, i.e, the state of an
architecture during system execution. An architecture trace is then formalized as a function which assigns
a snapshot cnf to each point in time nat. Finally, an architecture arch is modeled as a set “trace set” of
architecture traces.

As mentioned above, the interface to the model is given in terms of an Isabelle/Locale [Bal04]:
locale dynamic-component =
fixes tCMP :: ′id ⇒ cnf ⇒ ′cmp (σ-(-) [0 ,110 ]60 )
and active :: ′id ⇒ cnf ⇒ bool (‖-‖- [0 ,110 ]60 )

The locale introduces two type parameters:
′id represents a type containing component identifiers.
′cmp represents a type containing component snapshots.
Moreover, it requires two function parameters:
tCMP is an operator to extract the state of a component with a certain identifier ′id from an architecture

snapshot cnf .
active is a predicate to assert whether a component with a certain identifier ′id is activated within an

architecture snapshot cnf .
The locale introduces several operators for architecture traces, along with some characteristic properties
thereof.

Component projection. Perhaps the most important operator is behavior projection introduced by Def. 7.
As discussed in Sect. 2.7.1, the operator takes a component identifier c and an architecture trace t, and returns
a so called behavior trace, i.e., a list containing all the states of component c in t. Thereby, all the time points
in which component c is not activated in t are removed. The operator is formalized by combining the lazy
filter function lfilter (described above) with the lazy map function lmap:

definition proj :: ′id ⇒ (cnf llist) ⇒ ( ′cmp llist) (π-(-) [0 ,110 ]60 )
where proj c = lmap (λcnf . (σc(cnf ))) ◦ (lfilter (active c))

First, lfilter is used to remove all time points in t, for which c is not activated (using locale parameter
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active). Then, lmap is used to extract the state of a component out of a given architecture snapshot (using
locale parameter tCMP).

Least deactivation. The least deactivation operator was first introduced in Def. 5 and it is formalized
using Isabelle/HOL’s definite description operator LEAST , which returns the least element which satisfies
a certain condition (or an arbitrary element of the corresponding type if no element satisfied the condition):
definition lNAct :: ′id ⇒ (nat ⇒ cnf ) ⇒ nat ⇒ nat (〈- ⇐ -〉-)
where 〈c ⇐ t〉n ≡ (LEAST n ′. n=n ′ ∨ (n ′<n ∧ (@ k . k≥n ′ ∧ k<n ∧ ‖c‖t k)))

It takes a component identifier c, an architecture trace t, and a time point n and returns the time point right
after the last activation of c in t prior to n.

Next activation. As described in Def. 5, the next operator takes a component identifier c, an architecture
trace t, and a time point n, and returns the next point in time (including n) at which c is active in t.
definition nxtAct :: ′id ⇒ (nat ⇒ cnf ) ⇒ nat ⇒ nat (〈- → -〉-)
where 〈c → t〉n ≡ (THE n ′. n ′≥n ∧ ‖c‖t n ′ ∧ (@ k . k≥n ∧ k<n ′ ∧ ‖c‖t k))

Note that the formalization of the next operator uses Isabelle’s definite description operator THE , which
returns the unique element which satisfies a given condition if such an element exists (or an arbitrary element
of the corresponding type if no such element exists).

Latest activation. The latest activation operator was introduced in Def. 5 and returns the latest activation
of a component before a certain point in time. Again, its formalization uses one of Isabelle/HOL’s definite
description operator:
definition latestAct :: ′id ⇒ trace ⇒ nat ⇒ nat (〈- ← -〉-)
where 〈c ← t〉n = (GREATEST n ′. n ′<n ∧ ‖c‖t n ′)

Note that GREATEST in Isabelle/HOL is the dual of LEAST . It returns the greatest element which
satisfies a certain condition or an arbitrary element of the corresponding type if element satisfied the condi-
tion.

Last activation. The last point in time at which a component is active in an architecture trace can be ob-
tained using operator lActive, introduced in Def. 5. It is again formalized using Isabelle/HOL’s GREATEST
operator:
definition lActive :: ′id ⇒ (nat ⇒ cnf ) ⇒ nat (〈- ∧ -〉)
where 〈c ∧ t〉 ≡ (GREATEST i . ‖c‖t i)

4.1.3. Specifying Architecture Traces

To specify architecture traces, we formalized our notion of architecture trace assertion (introduced in Sect. 3).
To this end, we first introduced a type synonym for architecture trace assertions:
type-synonym cta = trace ⇒ nat ⇒ bool

Then, we introduced a mapping to lift an architecture assertion to a corresponding architecture trace asser-
tion:
definition ca :: (cnf ⇒ bool) ⇒ cta
where ca ϕ ≡ λ t n. ϕ (t n)

Finally, we defined each of the operators used in the specification of architecture trace assertions in terms of
predicate transformers, i.e., functions which take an architecture trace assertion and modify it accordingly.

Logical connectives. First, we introduced definitions for the basic logical operators:
definition neg :: cta ⇒ cta (¬c - [19 ] 19 )
where ¬c γ ≡ λ t n. ¬ γ t n

definition conj :: cta ⇒ cta ⇒ cta (infixl ∧c 20 )
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where γ ∧c γ ′ ≡ λ t n. γ t n ∧ γ ′ t n
definition disj :: cta ⇒ cta ⇒ cta (infixl ∨c 15 )
where γ ∨c γ ′ ≡ λ t n. γ t n ∨ γ ′ t n

definition imp :: cta ⇒ cta ⇒ cta (infixl −→c 10 )
where γ −→c γ ′ ≡ λ t n. γ t n −→ γ ′ t n

They mainly lift each corresponding HOL operator to the level of architecture traces. In a similar way,
we introduced quantifiers for architecture trace assertions:

definition all :: ( ′a ⇒ cta) ⇒ cta (binder ∀ c 10 )
where all P ≡ λt n. (∀ y. (P y t n))

definition ex :: ( ′a ⇒ cta) ⇒ cta (binder ∃ c 10 )
where ex P ≡ λt n. (∃ y. (P y t n))

Temporal operators. Then, we introduced definitions for each temporal logic operator. Their semantics
indeed resembles the traditional semantics of linear temporal logics [MP92].

Temporal logic next is implemented as a function which takes an architecture trace assertion γ and
returns another architecture trace assertion which evaluates γ at the next point in time.

definition nxt :: cta ⇒ cta ( c(-) 24 )
where c(γ) ≡ λt n. γ t (Suc n)

Eventually is formalized as a function which takes an architecture trace assertion γ and returns another
architecture trace assertion which evaluates γ somewhere in the future:

definition evt :: cta ⇒ cta (3c(-) 23 )
where 3c(γ) ≡ λt n. ∃n ′≥n. γ t n ′

The globally operator transforms an architecture trace assertion γ to another architecture trace assertion
which evaluates γ at every time in the future:

definition glob :: cta ⇒ cta (2c(-) 22 )
where 2c(γ) ≡ λt n. ∀n ′≥n. γ t n ′

Finally, until takes two architecture trace assertions, γ and γ′, and evaluates γ′ in the future as long as
γ does not hold:

definition until :: cta ⇒ cta ⇒ cta (infixl Uc 21 )
where γ ′ Uc γ ≡ λt n. ∃n ′′≥n. γ t n ′′ ∧ (∀n ′≥n. n ′ < n ′′ −→ γ ′ t n ′)

We also introduce a weaker notion of until as a combination of the traditional until and globally:

definition wuntil :: cta ⇒ cta ⇒ cta (infixl Wc 20 )
where γ ′ Wc γ ≡ γ ′ Uc γ ∨c 2c(γ ′)

4.1.4. Specifying Component Behavior

As described in Sect. 3, component behavior is specified using behavior trace assertions. Just as for archi-
tecture trace assertions, we start the formalization by introducing a corresponding type synonym:

type-synonym ′c bta = (nat ⇒ ′c) ⇒ nat ⇒ bool

Thereby, a behavior trace assertion is formalized as a predicate over a behavior trace and a natural number.
Here, the state of a component is modeled in terms of a type parameter ′c.

Similar as for architecture trace assertions, we then introduced an operator to lift behavior assertions to
corresponding behavior trace assertions:

definition pred :: bool ⇒ ( ′cmp bta)
where pred P ≡ λ t n. P

In addition, we also introduce an operator to lift an arbitrary HOL predicate to a corresponding behavior
trace assertion:
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definition ba :: ( ′cmp ⇒ bool) ⇒ ( ′cmp bta)
where ba ϕ ≡ λ t n. ϕ (t n)

Note that such a definition was not required for architecture trace assertions, since architecture assertions
can be used to lift arbitrary predicates to the level of architecture trace assertion. For behavior assertions,
this is not possible since they are evaluated only at time points at which a component is indeed active.

Similar as for architecture trace assertions, we defined each of the operators, used for the specification of
behavior trace assertions, in terms of predicate transformers.

Logical connectives. Basic logical connectives are defined in a similar way as for architecture trace asser-
tions:
definition imp :: ( ′cmp bta) ⇒ ( ′cmp bta) ⇒ ( ′cmp bta) (infixl −→b 10 )
where γ −→b γ ′ ≡ λ t n. γ t n −→ γ ′ t n

definition disj :: ( ′cmp bta) ⇒ ( ′cmp bta) ⇒ ( ′cmp bta) (infixl ∨b 15 )
where γ ∨b γ ′ ≡ λ t n. γ t n ∨ γ ′ t n

definition conj :: ( ′cmp bta) ⇒ ( ′cmp bta) ⇒ ( ′cmp bta) (infixl ∧b 20 )
where γ ∧b γ ′ ≡ λ t n. γ t n ∧ γ ′ t n

definition neg :: ( ′cmp bta) ⇒ ( ′cmp bta) (¬b - [19 ] 19 )
where ¬b γ ≡ λ t n. ¬ γ t n

Behavior assertions also support quantification over variables of a certain type. Again, Isabelle/HOL
quantifiers are used to formalize quantification for behavior assertions:

definition all :: ( ′a ⇒ ( ′cmp bta)) ⇒ ( ′cmp bta) (binder ∀ b 10 )
where all P ≡ λt n. (∀ y. (P y t n))

definition ex :: ( ′a ⇒ ( ′cmp bta)) ⇒ ( ′cmp bta) (binder ∃ b 10 )
where ex P ≡ λt n. (∃ y. (P y t n))

Temporal operators. Similar as for architecture trace assertions, we formalize temporal operators for
behavior trace assertions using their traditional semantics [MP92]:

definition nxt :: ( ′cmp bta) ⇒ ( ′cmp bta) ( b(-) 24 )
where b(γ) ≡ λ t n. γ t (Suc n)

definition evt :: ( ′cmp bta) ⇒ ( ′cmp bta) (3b(-) 23 )
where 3b(γ) ≡ λ t n. ∃n ′≥n. γ t n ′

definition glob :: ( ′cmp bta) ⇒ ( ′cmp bta) (2b(-) 22 )
where 2b(γ) ≡ λ t n. ∀n ′≥n. γ t n ′

definition until :: ( ′cmp bta) ⇒ ( ′cmp bta) ⇒ ( ′cmp bta) (infixl Ub 21 )
where γ ′ Ub γ ≡ λ t n. ∃n ′′≥n. γ t n ′′ ∧ (∀n ′≥n. n ′ < n ′′ −→ γ ′ t n ′)

definition wuntil :: ( ′cmp bta) ⇒ ( ′cmp bta) ⇒ ( ′cmp bta) (infixl Wb 20 )
where γ ′ Wb γ ≡ γ ′ Ub γ ∨b 2b(γ ′)

4.1.5. Formalizing Composition

As explained in Def. 8, behavior specifications are composed with architecture specifications using behavior
projection. To formalize composition, we introduced an evaluation function which takes a specification of
a component behavior (not considering component activation and deactivation) and interprets it over an
architecture trace (in which the component is subject to activation and deactivation). First, however, we
needed two additional operators to obtain a component’s number of activations and to map time points
between components and architectures.

Number of activations. This operator returns the number of activations of a certain component within
a given architecture trace. Intuitively, the operator takes a component identifier c, a time point n, and an
architecture trace t and returns the number of activations of c up to (and including) time point n. The
operator is formalized by combining component projection with the lazy take function ltake and the lazy
length function (both described above in Sect. 4.1.1):

definition nAct :: ′id ⇒ enat ⇒ (cnf llist) ⇒ enat (〈- #--〉)
where 〈c #n t〉 ≡ llength (πc(ltake n t))
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First, ltake is used to obtain a sublist of length n of the original architecture trace t. Then, component
projection is applied to the remaining architecture trace to remove all time points in which component c is
not active. What is left is a lazy list containing all the activations of c in t up to time point n and we simply
return its length.

Mapping time points. Applying behavior projection for a component c to an architecture trace t, results
in a behavior trace which contains all the states of c, whenever it is active in t. Thereby, the time points
at which a certain state of c is available, after applying projection, may change (due to the deactivation of
c in t). Thus, to map time points in between an architecture trace and the corresponding projection, we
introduce two additional operators:
definition cnf2bhv :: ′id ⇒ (nat ⇒ cnf ) ⇒ nat ⇒ nat (-↓-(-) [150 ,150 ,150 ] 110 )
where c↓t(n) ≡ the-enat(llength (πc(inf-llist t))) − 1 + (n − 〈c ∧ t〉)
definition bhv2cnf :: ′id ⇒ (nat ⇒ cnf ) ⇒ nat ⇒ nat (-↑-(-) [150 ,150 ,150 ] 110 )
where c↑t(n) ≡ 〈c ∧ t〉 + (n − (the-enat(llength (πc(inf-llist t))) − 1 ))

Note that cnf2bhv is used to map a given time point n for an architecture trace t to the corresponding
projection Πc(t) ̂ t′, while bhv2cnf is used to map a time point n for the Πc(t) ̂ t′ back to the corresponding
architecture trace t.

Evaluating behavior specifications over architecture traces Now we have everything we need to
formalize the evaluation operator mentioned above. It is formalized by an Isabelle function eval , which takes
a component identifier ′id and a behavior trace assertion, and transforms it to a corresponding architecture
trace assertion:
definition eval :: ′id ⇒ (nat ⇒ cnf ) ⇒ (nat ⇒ ′cmp) ⇒ nat ⇒ ((nat ⇒ ′cmp) ⇒ nat ⇒ bool) ⇒ bool
where eval cid t t ′ n γ ≡ (∃ i≥n. ‖cid‖t i) ∧ γ(lnth ((πcid(inf-llist t))@l(inf-llist t ′)))(the-enat(〈cid #n inf-llist t〉)) ∨
(∃ i . ‖cid‖t i) ∧ (@ i ′. i ′≥n∧‖cid‖t i ′) ∧ γ(lnth ((πcid(inf-llist t))@l(inf-llist t ′)))(cid↓t(n)) ∨
(@ i . ‖cid‖t i) ∧ γ (lnth ((πcid(inf-llist t))@l(inf-llist t ′))) n

To evaluate a behavior trace assertion γ over an architecture trace t at time point n, eval distinguishes
between three cases:

• If component cid is again activated in the future, γ is evaluated at the next point in time where cid is
active in t.

• If component cid is not again activated in the future, but it is activated at least once in t, then γ is
evaluated at the point in time given by the corresponding time mapping.

• If component cid is never active in t, then γ is evaluated at time point n.

4.2. Creating Pattern Theories

As mentioned at the beginning, the formalization of the model, as presented in this section, can be used to
support the interactive verification of ADPs. To this end, a pattern specification (in terms of the techniques
presented in Sect. 3) can be systematically transferred to a corresponding Isabelle/HOL theory. Algorithm 1
describes the mapping in more detail. In general, the transformation is done in four main steps:

1. The specified FACTum datatypes are transferred to corresponding Isabelle/HOL datatypes.
2. An Isabelle locale is created for the corresponding pattern, which imports other locales for each instan-

tiated pattern (or locale dynamic_component for each type of component which does not instantiate any
component type from another pattern). Ports for component types are added as locale parameters and
typed by the corresponding Isabelle/HOL datatypes.

3. Specifications of component behavior are added as locale assumptions, formulated in terms of behavior
trace assertions (as formalized in Sect. 4.1.4), and evaluated using the evaluation function introduced in
Sect. 4.1.5.

4. Activation and connection assertions are provided as locale assumptions, formulated in terms of archi-
tecture trace assertions, formalized in Sect. 4.1.3.

The following result guarantees soundness of Alg. 1, i.e., that the algorithm indeed preserves the semantics
of a FACTum specification.
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Algorithm 1 Mapping a pattern specification to an Isabelle/HOL Theory.

Input: A FACTum specification of ADP
{with Datatype Spec. DS , Component Type Spec. CS , and Architecture Spec. AS}

Output: An Isabelle/HOL theory for the specification
1: for all Datatypes dt in DS do
2: create Isabelle/HOL datatype specification for dt
3: end for
4: create Isabelle/HOL locale for the pattern
5: for all Component Types ct in CS do
6: if ct instantiates a component type of another pattern specification PS then
7: import the corresponding locale for PS

{requires to import the corresponding Isabelle theory}
8: create instance of ports/parameters according to the specified port mapping

{the parameter for every port of ct is passed to the imported locale}
9: else

10: import locale “dynamic_component” of theory “Configuration_Traces”
11: end if
12: create instance of locale parameters tCMP and active
13: for all component parameters p of ct which are not instances do
14: create locale parameter par of the type corresponding to the type of p
15: create locale assumption “∀x. ∃c. par(c) = x”

{since FACTum requires nonempty sets of components for each type}
16: end for

{instantiated parameters are already handled at line 8}
17: for all ports p which are not instances do
18: create locale parameter of the type corresponding to the datatype of p
19: end for

{instantiated ports are already handled at line 8}
20: for all behavior trace assertions b of ct do
21: create locale assumption for b

{use the operators and evaluation function presented in this chapter}
22: end for
23: end for
24: for all architecture trace assertions c of AS do
25: create locale assertion for c

{use the operators presented in this chapter}
26: end for

Theorem 4.1 (Soundness of Alg. 1). A set of architecture traces satisfies a FACTum specification iff it
satisfies the theory generated from the FACTum specification by Algorithm 1.

Although a formal proof for this theorem is out of the scope of this text, we provide an informal argument
for it in App. C. In the following, we demonstrate the algorithm by applying it to the specification of our
three running examples, as presented in Sect. 3.

4.2.1. Singleton

First, we discuss the outcome generated from the specification of the Singleton pattern presented in Ex. 23.

Mapping the pattern specification. Since the specification of the Singleton did not involve the specifi-
cation of data types, no Isabelle datatype specification is created. However, an Isabelle locale is created from
the specification of a singleton’s interface (specified in Fig. 35). The corresponding Isabelle/HOL code looks
as follows:
locale singleton = dynamic-component cmp active
for active :: ′id ⇒ cnf ⇒ bool (‖-‖- [0 ,110 ]60 )
and cmp :: ′id ⇒ cnf ⇒ ′cmp (σ-(-) [0 ,110 ]60 ) +
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Since the Singleton pattern consists of one type of component, which does not instantiate any other compo-
nent type, we instantiate locale dynamic-component once. To this end, we must provide two locale parameters:

• A mapping cmp to access a certain singleton component in a given architecture snapshot, based on its
identifier.

• A predicate active which checks whether a singleton component, with a certain identifier, is activated in
an architecture snapshot.

Moreover, the specification of the Singleton consists of two architectural constraints (specified as anno-
tations in Fig. 35), which are transferred to corresponding locale assumptions:
assumes alwaysActive:

∧
k . ∃ id . ‖id‖k

and unique: ∃ id . ∀ k . ∀ id ′. (‖id ′‖k −→ id = id ′)

Locale assumption alwaysActive is generated from the Singleton’s assumption that a singleton component
is always active. Locale assumption unique is created from the assumption that a singleton component is
indeed unique.

4.2.2. Publisher-Subscriber

Next, we discuss the mapping for the specification of the Publisher-Subscriber pattern discussed in Ex. 26.

Mapping data types. Since the specification of the Publisher-Subscriber pattern indeed contains specifi-
cations for data types, we first need to create a corresponding datatype specification in Isabelle/HOL:

datatype ′evt subscription = sub ′evt | unsub ′evt

According to the datatype specification presented in Ex. 11, we create a parametric datatype subscription,
which depends on a type parameter ′evt to denote events for which subscribers can subscribe. Thereby, the
elements of a subscription are defined to be either a subscription sub to an event ′evt , or an unsubscription
unsub for an event ′evt .

Mapping architectural assumptions. The specification of the pattern’s interfaces (as presented in
Fig. 40) is again mapped to a corresponding Isabelle locale specification:
locale publisher-subscriber =
pb: singleton pbactive pbcmp +
sb: dynamic-component sbcmp sbactive
for pbactive :: ′pid ⇒ cnf ⇒ bool
and pbcmp :: ′pid ⇒ cnf ⇒ ′PB
and sbactive :: ′sid ⇒ cnf ⇒ bool
and sbcmp :: ′sid ⇒ cnf ⇒ ′SB +

This time, however, two interfaces are specified, which requires two locale instantiations: Since the publisher
component type is specified to be an instance of the singleton component type from the Singleton pattern,
a corresponding instantiation of the Singleton locale is created. The subscriber component type does not
instantiate any other component type, which is why it instantiates the default locale dynamic-component
from our framework. Note that locale instantiations are indeed transitive, which means that, implicitly,
also the publisher component type instantiates locale dynamic-component. Thus, all the definitions of locale
dynamic-component are available also for publisher components, although they do not directly instantiate
dynamic-component.

In contrast to the singleton component type, which has no specified ports, publishers as well as subscribers
have ports specified for their interfaces. The port types specified in Fig. 20 are mapped to corresponding
locale parameters:
fixes pbsb :: ′PB ⇒ ( ′evt set) subscription set
and pbnt :: ′PB ⇒ ( ′evt × ′msg)
and sbnt :: ′SB ⇒ ( ′evt × ′msg) set
and sbsb :: ′SB ⇒ ( ′evt set) subscription

For each port, we create a locale parameter which takes a component of the corresponding component type
and returns a set of messages of the corresponding port type.
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Finally, the two connection assumptions, specified for the Publisher-Subscriber pattern in Fig. 40, are
mapped to corresponding locale assumptions:
assumes conn1 :

∧
k pid . pbactive pid k

=⇒ pbsb (pbcmp pid k) = (
⋃
sid∈{sid . sbactive sid k}. {sbsb (sbcmp sid k)})

and conn2 :
∧
t n n ′′ sid pid E e m.

[[t ∈ arch; pbactive pid (t n); sbactive sid (t n); sub E = sbsb (sbcmp sid (t n)); n ′′≥ n; e ∈ E ;
@n ′ E ′. n ′ ≥ n ∧ n ′ ≤ n ′′ ∧ sbactive sid (t n ′) ∧
unsub E ′ = sbsb (sbcmp sid (t n ′)) ∧ e ∈ E ′;

(e, m) = pbnt (pbcmp pid (t n ′′)); sbactive sid (t n ′′)]]
=⇒ pbnt (pbcmp pid (t n ′′)) ∈ sbnt (sbcmp sid (t n ′′))

Thereby, connection requirements between two ports are simply mapped to equality assumptions for
the corresponding locale parameters. conn1, for example, denotes the constraint that port sb of a publisher
component is connected to port sb of every active subscriber component.

4.2.3. Blackboard

Finally, we present the mapping of the Blackboard pattern as specified in Ex. 27. Again, a Blackboard
pattern requires special data types, which are created first.

Mapping data types. In contrast to the Publisher-Subscriber pattern, data types for the Blackboard
pattern are specified axiomatically:
typedecl PROB
consts sb :: (PROB × PROB) set
axiomatization where sbWF : wf sb
typedecl SOL
consts solve:: PROB ⇒ SOL

As required by the corresponding FACTum datatype specification (Ex. 12), the specification introduces two
abstract types: problems and solutions. It then requires the existence of a well-founded relation sb which
relates problems with corresponding subproblems. Finally, it requires the existence of a mapping solve, which
is assumed to assign the correct solution to each problem.

Mapping architectural assumptions. Again, the pattern specification is mapped to a corresponding
Isabelle/HOL locale. Similar as for the Publisher-Subscriber pattern, the pattern’s interfaces are used to
generate a corresponding locale header:
locale blackboard = publisher-subscriber bbactive bbcmp ksactive kscmp bbrp bbcs kscs ksrp
for bbactive :: ′bid ⇒ cnf ⇒ bool (‖-‖- [0 ,110 ]60 )
and bbcmp :: ′bid ⇒ cnf ⇒ ′BB (σ-(-) [0 ,110 ]60 )
and ksactive :: ′kid ⇒ cnf ⇒ bool (‖-‖- [0 ,110 ]60 )
and kscmp :: ′kid ⇒ cnf ⇒ ′KS (σ-(-) [0 ,110 ]60 )
and bbrp :: ′BB ⇒ (PROB set) subscription set
and bbcs :: ′BB ⇒ (PROB × SOL)
and kscs :: ′KS ⇒ (PROB × SOL) set
and ksrp :: ′KS ⇒ (PROB set) subscription +

fixes bbns :: ′BB ⇒ (PROB × SOL) set
and ksns :: ′KS ⇒ (PROB × SOL)
and bbop :: ′BB ⇒ PROB
and ksop :: ′KS ⇒ PROB set

Since the Blackboard is specified to be an instance of the Publisher-Subscriber pattern, the locale created for
the Blackboard pattern instantiates the locale of the Publisher-Subscriber pattern. The instantiation requires
eight parameters: The first four parameters are the usual parameters required by locale dynamic_component
to obtain a component from an architecture snapshot, and to check activation of a component within an
architecture snapshot. In addition, we must provide an additional parameter for each port available in the
specification of the Publisher-Subscriber pattern. These parameters denote ports of the Blackboard pattern,
which interpret the corresponding ports of the Publisher-Subscriber pattern (as specified by the port mapping
provided in Fig. 41). For example, port rp of a blackboard corresponds to port sb of a publisher, port cs of
a blackboard to port nt of the publisher, port cs of a knowledge source to port nt of a subscriber, and port
rp of a knowledge source to port sb of a subscriber.
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As a next step, we generate interface parameters and corresponding assumptions:
and prob :: ′kid ⇒ PROB

assumes
ks1 : ∀ p. ∃ ks. p=prob ks — Component Parameter

Since knowledge sources are parameterized by problems, we must generate a corresponding locale pa-
rameter which assigns a problem to each knowledge source. Moreover, we generate an assumption ks1, which
requires the existence of at least one knowledge source for each problem (as required by the semantics of
parametric component types described in Sect. 3.2.1).

Finally, we generate additional locale assumptions, according to the activation and connection constraints
described in Ex. 27:

— Assertions about component activation.
and actks:∧

t n kid p. [[t ∈ arch; ksactive kid (t n); p=prob kid ; p∈ksop (kscmp kid (t n))]]
=⇒ (∃n ′≥n. ksactive kid (t n ′) ∧ (p, solve p) = ksns (kscmp kid (t n ′)) ∧
(∀n ′′≥n. n ′′<n ′ −→ ksactive kid (t n ′′)))
∨ (∀n ′≥n. (ksactive kid (t n ′) ∧ (¬(p, solve p) = ksns (kscmp kid (t n ′)))))

— Assertions about connections.
and conn1 :

∧
k bid . bbactive bid k

=⇒ bbns (bbcmp bid k) = (
⋃
kid∈{kid . ksactive kid k}. {ksns (kscmp kid k)})

and conn2 :
∧
k kid . ksactive kid k

=⇒ ksop (kscmp kid k) = (
⋃
bid∈{bid . bbactive bid k}. {bbop (bbcmp bid k)})

In contrast to the patterns discussed so far, a Blackboard involves also the specification of component
types, i.e., assumptions about component behavior. Thus, one additional locale assumption is generated
for every behavior assumption presented in Ex. 18 and Ex. 19, using our formalization of behavior trace
assertions (as presented in Sect. 4.1.4):

— Assertions about component behavior.
and bhvbb1 :

∧
t t ′ bId p s. [[t ∈ arch]] =⇒ pb.eval bId t t ′ 0

(pb.glob (pb.ba (λbb. (p,s)∈bbns bb)
−→p (pb.evt (pb.ba (λbb. (p,s) = bbcs bb)))))

and bhvbb2 :
∧
t t ′ bId P q. [[t∈arch]] =⇒ pb.eval bId t t ′ 0

(pb.glob (pb.ba (λbb. sub P ∈ bbrp bb ∧ q ∈ P) −→p

(pb.evt (pb.ba (λbb. q = bbop bb)))))
and bhvbb3 :

∧
t t ′ bId p . [[t∈arch]] =⇒ pb.eval bId t t ′ 0

(pb.glob (pb.ba (λbb. p = bbop(bb)) −→p

(pb.wuntil (pb.ba (λbb. p=bbop(bb))) (pb.ba (λbb. (p,solve(p)) = bbcs(bb))))))
and bhvks1 :

∧
t t ′ kId p P . [[t∈arch; p = prob kId ]] =⇒ sb.eval kId t t ′ 0

(sb.glob ((sb.ba (λks. sub P = ksrp ks)) ∧s
(sb.all (λq. (sb.pred (q∈P)) −→s (sb.evt (sb.ba (λks. (q,solve(q)) ∈ kscs ks)))))
−→s (sb.evt (sb.ba (λks. (p, solve p) = ksns ks)))))

and bhvks2 :
∧
t t ′ kId p P q. [[t ∈ arch;p = prob kId ]] =⇒ sb.eval kId t t ′ 0

(sb.glob (sb.ba (λks. sub P = ksrp ks ∧ q ∈ P −→ (q,p) ∈ sb)))
and bhvks3 :

∧
t t ′ kId p. [[t∈arch;p = prob kId ]] =⇒ sb.eval kId t t ′ 0

(sb.glob ((sb.ba (λks. p∈ksop ks)) −→s (sb.evt (sb.ba (λks. (∃P . sub P = ksrp ks))))))
and bhvks4 :

∧
t t ′ kId p P . [[t∈arch; p∈P ]] =⇒ sb.eval kId t t ′ 0

(sb.glob ((sb.ba (λks. sub P = ksrp ks)) −→s

(sb.wuntil (¬s (∃ s P ′. (sb.pred (p∈P ′) ∧s (sb.ba (λks. unsub P ′ = ksrp ks)))))
(sb.ba (λks. (p,solve p) ∈ kscs ks)))))

Remember that assumptions about component behavior are specified without considering possible activations
and deactivations of a component. Thus, corresponding specifications have to be interpreted for architecture
traces using the evaluation operator introduced in Sect. 4.1.5.

4.3. Verifying Architectural Design Patterns

After mapping the specification to corresponding Isabelle/HOL theories, we can verify guarantees for them.
Therefore, we first specify architectural guarantees using architecture trace assertions (introduced in Sect. 3.3).
Then we can map them to corresponding Isabelle/HOL theorems and verify them using Isabelle’s structured
proof language Isabelle/Isar [Wen07]. In the case we are dealing with pattern hierarchies, guarantees for lower
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ASpec Guarantee_Singleton for Singleton
flex s : Singleton
rig the-singleton : Singleton

∃the-singleton : �
(
the-singleton ∧ ( s −→ s = the-singleton)

)

Fig. 46. Architectural guarantee for the Singleton pattern.

level patterns are automatically transferred to higher level patterns where they can be used to support their
verification. In the following, we demonstrate the verification phase in terms of our three running examples.

4.3.1. Singleton

Lets first discuss the verification of the Singleton pattern as specified in Ex. 23.

Guarantee. One possible guarantee for a Singleton is that there exists indeed a unique component of type
singleton, which is always activated. It is formalized in terms of an architecture specification in Fig. 46. First,
we specify two component variables for singletons: a flexible variable s and a rigid variable the-singleton5.
Then, we require the existence of such a rigid singleton, which is always activated and indeed the only
component of type singleton which is active at any point in time.

Mapping the guarantee. The architectural guarantee is systematically transferred to the following Is-
abelle/HOL theorem:

definition the-singleton ≡ THE id . ∀ k . ∀ id ′. ‖id ′‖k −→ id ′ = id

theorem ts-prop:
fixes k ::cnf
shows

∧
id . ‖id‖k =⇒ id = the-singleton

and ‖the-singleton‖k

First, Isabelle/HOL’s definite description operator THE is used to define the unique singleton component.
Then, a theorem is created which guarantees that a singleton is indeed unique and always activated.

Proving the theorem. A possible proof for theorem ts-prop in Isabelle/Isar looks as follows:
proof −
{ fix id
assume a1 : ‖id‖k
have (THE id . ∀ k . ∀ id ′. ‖id ′‖k −→ id ′ = id) = id
proof (rule the-equality)
show ∀ k id ′. ‖id ′‖k −→ id ′ = id
proof
fix k show ∀ id ′. ‖id ′‖k −→ id ′ = id
proof
fix id ′ show ‖id ′‖k −→ id ′ = id
proof
assume ‖id ′‖k
from unique have ∃ id . ∀ k . ∀ id ′. (‖id ′‖k −→ id = id ′) .
then obtain i ′′ where ∀ k . ∀ id ′. (‖id ′‖k −→ i ′′ = id ′) by auto
with 〈‖id ′‖k〉 have id=i ′′ and id ′=i ′′ using a1 by auto
thus id ′ = id by simp

qed
qed

qed
next
fix i ′′ show ∀ k id ′. ‖id ′‖k −→ id ′ = i ′′ =⇒ i ′′ = id using a1 by auto

qed

5 Recall that, flexible variables may change their value at each point in time, whereas rigid variables keep their value during
the whole execution.
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ASpec Publisher-Subscriber for Publisher-Subscriber
flex the-pb : Publisher

m : msg
E : ℘(evt)

rig s′ : Subscriber
e : evt

�

(
s′ ∧

(
∃E : sub E = s′.sb ∧ e ∈ E

)

−→
((
s′ ∧ (e,m) = the-pb.nt −→ (e,m) = s′.nt

)

W
(
s′ ∧ (∃E : unsub E = s′.sb ∧ e ∈ E)

))
)

Fig. 47. Architectural guarantee for the Publisher-Subscriber pattern.

hence ‖id‖k =⇒ id = the-singleton by (simp add : the-singleton-def )
} note g1 = this
thus

∧
id . ‖id‖k =⇒ id = the-singleton by simp

from alwaysActive obtain id where ‖id‖k by blast
with g1 have id = the-singleton by simp
with 〈‖id‖k〉 show ‖the-singleton‖k by simp

qed

Note the reference to the two assumptions unique (line 13) and alwaysActive (line 27), generated from the
pattern’s imposed assumptions and discussed in Sect. 4.2.1.

4.3.2. Publisher-Subscriber

Next, we discuss the verification of a possible guarantee for the Publisher-Subscriber pattern.

Results from the singleton. Since the Publisher-Subscriber pattern instantiates the Singleton pattern,
results obtained for the Singleton are automatically interpreted in the context of the Publisher-Subscriber
pattern. Thus, declaring the publisher to be an instance of a Singleton has two major consequences.

First, a corresponding definition of the unique publisher component is available:
abbreviation the-pb :: ′pid where
the-pb ≡ pb.the-singleton

Essentially, the-pb abbreviates definition the-singleton introduced in Sect. 4.3.1.
Moreover, the theorem proved for singleton components is available also for components of type publisher:

pb.ts-prop (1 ): pbactive id k =⇒ id = the-pb
pb.ts-prop (2 ): pbactive the-pb k

Guarantee. A possible guarantee for our version of the Publisher-Subscriber pattern is specified in Fig. 47.
It guarantees that a subscriber component indeed receives all the messages for which it is subscribed.

Mapping the guarantee. Similar as for the Singleton pattern, the architectural guarantee for Publisher-
Subscriber architectures can be mapped to a corresponding Isabelle/HOL theorem:
theorem msgDelivery:
fixes t n n ′′ sid E e m
assumes t ∈ arch
and sbactive sid (t n)
and sub E = sbsb (sbcmp sid (t n))
and n ′′ ≥ n
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and @n ′ E ′. n ′ ≥ n ∧ n ′ ≤ n ′′ ∧ sbactive sid (t n ′) ∧ unsub E ′ = sbsb(sbcmp sid (t n ′)) ∧ e ∈ E ′
and e ∈ E
and (e,m) = pbnt (pbcmp the-pb (t n ′′))
and sbactive sid (t n ′′)

shows (e,m) ∈ sbnt (sbcmp sid (t n ′′))

Proving the theorem. The proof for theorem msgDelivery in Isabelle is a simple one-liner:
using conn1 [OF pb.ts-prop(2 )] .

It follows directly from the assumptions generated for the pattern and the guarantee inherited from the
Singleton.

4.3.3. Blackboard

Finally, we discuss the verification of a guarantee for the Blackboard pattern.

Results from the Publisher-Subscriber pattern. Since a Blackboard instantiates the Publisher-Subscriber
pattern (and therefore implicitly also the Singleton pattern), we get all the properties verified for these pat-
terns also for the Blackboard pattern, for free. First, we get all the results for the Singleton pattern:
abbreviation the-bb ≡ the-pb
pb.ts-prop (1 ): ‖id‖k =⇒ id = the-bb
pb.ts-prop (2 ): ‖the-bb‖k

Similar as for the Publisher-Subscriber, we first introduce an abbreviation the-bb to denote the unique
component of type blackboard and then we get a corresponding lemma, about uniqueness of a blackboard
component, from the guarantee of the Singleton pattern.

In addition, we get results from the Publisher-Subscriber pattern:
msgDelivery:

[[t ∈ arch;
‖sid‖t n;
sub E = ksrp (σsidt n);
n ≤ n ′′;
@n ′ E ′. n ≤ n ′ ∧ n ′ ≤ n ′′ ∧ ‖sid‖t n ′ ∧ unsub E ′ = ksrp (σsidt n

′) ∧ e ∈ E ′;
e ∈ E ;
(e, m) = bbcs (σthe-bbt n

′′);
‖sid‖t n ′′]]

=⇒ (e, m) ∈ kscs (σsidt n
′′)

Basically, the results resemble the property verified for Publisher-Subscriber patterns (discussed in the last
section) with activation and selection parameters from knowledge sources and blackboards, respectively.

Guarantee. Figure 48 provides the specification of a possible guarantee for Blackboard architectures: If for
every open subproblem, a knowledge source able to solve this problem is eventually activated (Eq. (27)),
then, the architecture will eventually solve a given problem (Eq. (28)), even if no single knowledge source is
able to solve the problem on its own). Note that the specification uses the concept of parameterized variables
for knowledge sources. Thus, given a problem p, variable ks〈p〉 denotes a variable for a knowledge source
component which is indeed able to solve problem p.

Mapping the guarantee. As for the other examples, we finally generate a theorem according to the
guarantee presented in Sec. 4.3.3. To foster readability, we first use Isabelle/HOL’s indefinite description
operator SOME to introduce an additional definition to denote a knowledge source with a certain property:
definition sKs:: PROB ⇒ ′kid where
sKs p ≡ (SOME kid . p = prob kid)

Then, we can use this definition to create a corresponding Isabelle/HOL theorem:
theorem pSolved :
fixes t and t ′::nat ⇒ ′BB and t ′′::nat ⇒ ′KS
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ASpec Guarantee_Blackboard for Blackboard
flex the-bb : BB

ks : KS
P : ℘(PROB)

rig p : PROB(
�
(
∀p = the-bb.op : ♦ ks〈p〉

))
−→ (27)

�
(
∀P :

(
sub P ∈ the-bb.rp −→ ∀p ∈ P : ♦((p, solve(p)) ∈ the-bb.cs

)))
(28)

Fig. 48. Architectural guarantee for the Blackboard pattern.

assumes t∈arch and
∀n. (∃n ′≥n. ksactive (sKs (bbop(bbcmp the-bb (t n)))) (t n ′))

shows
∀n. (∀P . (sub P ∈ bbrp(bbcmp the-bb (t n))
−→ (∀ p ∈ P . (∃m≥n. (p,solve(p)) = bbcs (bbcmp the-bb (t m))))))

Proving the theorem. To prove theorem pSolved, we first prove a corresponding lemma:

lemma pSolved-Ind :
fixes t and t ′::nat ⇒ ′BB and p and t ′′::nat ⇒ ′KS
assumes t∈arch and
∀n. (∃n ′≥n. ksactive (sKs (bbop(bbcmp the-bb (t n)))) (t n ′))

shows
∀n. (∃P . sub P ∈ bbrp(bbcmp the-bb (t n)) ∧ p ∈ P) −→

(∃m≥n. (p,solve(p)) = bbcs (bbcmp the-bb (t m)))

The lemma can be proved by well-founded induction over the subproblem relation sb, since sb was declared
to be well-founded in Sec. 4.2.3. The final theorem is now a direct consequence of this lemma and can be
proved in a single line:

using assms pSolved-Ind by blast

4.4. Summary

In this section, we described our approach for the interactive verification of ADPs, based on interactive
theorem proving. To this end, we first presented our formalization of the model of dynamic architectures
(from Sect. 2) in Isabelle/HOL. The corresponding theory is based on the theory of coinductive lists and
contains formalizations of all the concepts introduced for the model in Sect. 2. The formalization also provides
an interface to the concepts of the model in terms of an Isabelle locale dynamic_component, which can be
instantiated to obtain specification operators for component types.

Next, we presented an algorithm to map a FACTum specification (as presented in Sect. 3) to a corre-
sponding Isabelle/HOL theory. The resulting theory imports the theory of our model, contains corresponding
datatype specifications, and a locale for the pattern specification. The locale instantiates dynamic_component
for each specified type of component and contains assumptions derived from the corresponding specification
of component types and architectural constraints.

Finally, we demonstrate the approach in terms of our three running examples: We demonstrated the
Isabelle/HOL specification generated for each pattern, formalized a corresponding guarantee in FACTum,
and proved it using Isabelle’s structured proof language Isabelle/Isar. Since our approach supports hierar-
chical pattern specifications, guarantees proved for a pattern are automatically transferred to higher level
patterns, where they can be used to support the verification of these patterns. Thus, verification of the
Publisher-Subscriber was supported by the guarantee inherited from the Singleton pattern and verification
of the Blackboard pattern used the results inherited from the Publisher-Subscriber pattern.
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Fig. 49. The FACTum methodology for interactive pattern verification.

5. Methodology and Evaluation

So far, we have introduced a formal model for dynamic architectures (Sect. 2), techniques to specify ADPs
over this model (Sect. 3), and a framework to support the verification of such specifications, based on the
interactive theorem prover Isabelle/HOL. In the following section, we elaborate on these results and integrate
them into an overall methodology for the interactive verification of ADPs.

Figure 49 depicts the main activities (rounded rectangles) and artifacts (rectangles) of the FACTum
methodology for interactive pattern verification. It consists of three main phases:

1. Pattern specification
2. Theory creation
3. Pattern verification

In the pattern specification phase, an ADP is specified by formalizing the corresponding architectural
constraints and architectural guarantees. As indicated by the stick figures, specification is a manual activity.
The specification is based on the model presented in Sect. 2 and supported by the techniques described in
Sect. 3. The outcome of this first phase is a formal specification of a pattern’s architectural constraints and
architectural guarantees. The formal specification of the pattern is then used in the theory creation phase to
create corresponding Isabelle/HOL theories. The theories are built on top of our formalization of architecture
traces, presented in the last section, and their generation can be automated by the algorithm presented in
Sect. 4.2. In the pattern verification phase, the pattern is verified by proving the theorem (obtained from the
pattern’s guarantee) from the pattern’s specification. As indicated by the figure, this is a semi-automated
step: A user first develops a corresponding proof in Isabelle’s structured proof language Isar. Then, the
logical reasoners of Isabelle ensure soundness of each of the steps performed in the proof.

To support a user in the specification and theory creation phase, FACTum is accompanied by a tool
called FACTum Studio. To this end, we implemented the specification techniques presented in Sect. 3 in
Eclipse/EMF. In addition, we implemented the algorithm presented in Sect. 4.2 to automatically generate
Isabelle/HOL theories from specifications developed in FACTum Studio. We evaluated FACTum by means
of three example cases and one larger case study. In the following, we first present FACTum Studio in more
detail. Then, we present the results obtained from our evaluation of FACTum.

5.1. FACTum Studio

FACTum Studio is an Eclipse/EMF-based application that implements the approach presented so far to
support the specification and verification of architectural design patterns. At the time of writing, the tool’s
main features range over the modeling of design patterns to transforming these models into Isabelle/HOL
code [MG18]. In the following, we briefly discuss its main features and provide an overview of its architecture.
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Fig. 50. FACTum Studio Features.

5.1.1. Overview of Main Features

Figure 50 illustrates the tools main features by means of the Publisher-Subscriber example:

• Textual specification of abstract datatypes (as discussed in Sect. 3.1).
• Graphical modeling of interfaces for component types (as discussed in Sect. 3.2.1) and textual specification

of corresponding behavioral constraints (as discussed in Sect. 3.2.2).
• Textual specification of architectural constraints and architectural guarantees (as discussed in Sect. 3.3).
• Generation of Isabelle/HOL theories from specifications (according to Alg. 1).

To support the user in the development of correct specifications, FACTum Studio provides support for
various types of static checks: Whenever datatype functions or predicates are used for the specification of
component types, architectural constraints or architectural guarantees, they are checked for type-consistency
according to their signature declaration. Terms are typed by sorts from corresponding datatype specifications
and they are checked for type-compatibility when used in the specification of component types, architectural
constraints, or architectural guarantees. Behavioral specifications for a certain component type must only
use ports of that type. Ports which are required to be connected must be typed by the same sort.

5.1.2. FACTum Studio Architecture

FACTum Studio is implemented based on the Eclipse Modeling Framework (EMF), particularly the Obeo
Designer Community edition [TO17]. The development of the tool utilizes frameworks and languages in the
Eclipse/EMF ecosystem, which include Xtext, Ecore, Xtend and Sirius [Bet16, TO17].

Figure 51 illustrates the architecture of FACTum Studio. The tool has two workspaces. The first part
is where the domain language is modeled and defined, which is the FACTum pattern metamodel. It is the
development workspace where the grammar, constraints, validations, and the code generation templates are
developed. Additionally, the workspace contains standard EMF editors that support the development of the
domain metamodel. The second part, the FACTum pattern instance, is the user workspace or the runtime
of the domain language, where patterns are modeled based on the metamodel. The user workspace provides
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Fig. 51. FACTum Studio Architecture.

textual and graphical editors for the specification of ADPs as discussed in Sect. 3. It also enables code
generation from the specified model.

FACTum grammar. The grammar is the FACTum language definition, which contains all the production
rules describing the concrete syntax. It includes the concrete syntax of abstract datatypes, component types
(including their interfaces and behavior), architectural constraints, and architectural guarantees. All the
other FACTum language infrastructure elements are mainly generated from the FACTum grammar. It
includes the Ecore model, the parser and text editor, and other additional common language infrastructure
code.

The FACTum grammar implementation is developed based on Xtext. Xtext is a language engineering
framework within the Eclipse Modeling Framework [Bet16]. It provides an infrastructure for parsing, linking,
type checking, and an editor which works smoothly with the Eclipse-based IDE. The FACTum grammar
file, Pattern.xtext, is available in the project’s source code repository in Github [GM18].

Ecore metamodel. The Ecore Metamodel is the central or core part of EMF-based languages. It describes
domain models in the form of classes, attributes, and their relationships [TO17]. Additionally, it provides a
structured data model to support the generation of abstract syntax trees and a set of Java classes based on
the grammar.

In FACTum, the Ecore metamodel is generated automatically from the grammar as an Xtext language
artifact and named (Pattern.ecore) [GM18]. Additional language elements such as referencing, validation,
constraint checks, and type checking are implemented based on the Ecore model. The implementation of
constraint checks, validation, and other language support is developed using Xtend [Bet16].

Code generation. Based on the parsed Ecore model, models can be interpreted and transformed into other
language codes or models. Code generation in EMF is implemented with the Xtend template engine. After
the desired transformation mapping is developed, EMF automatically integrates the code generator into the
runtime workspace.

Similarly, the FACTum code generator template implementation is developed, based on Xtend. It gen-
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erates Isabelle/HOL theories, based on a specified pattern. The FACTum code generator template files are
available in the project source code repository in Github [GM18].

Textual model. The FACTum textual editor provides the support to specify models of ADPs in a textual
format. Starting with a definition of data types, it enables specification of all other elements of patterns,
such as component types, architectural constraints, and architectural guarantees. The text editor is part of
Xtext generated language artifacts. The FACTum Textual model example files are available in the project
code repository [GM18].

Graphical model. Similarly to the text editor, the FACTum graphical editor enables the specification of
pattern elements but graphically. It provides a list of graphical items in a palette, where a user can drag
and create pattern elements. Currently, the graphical editor does not enable specification of behavior and
constraints, which must be defined in the textual editor. The graphical editor is developed based on Sirius.
It is a graphical modeling and visualization tool based on EMF. Sirius graphical editors are developed by
configuring viewpoint specifications on Sirius.

Changes to the graphical model are automatically reflected in the textual model and vice versa. The
synchronization is triggered, once the model is saved. The FACTum Graphical model example files are
available in the project code repository [GM18].

5.2. Evaluation

In order to evaluate our approach, we applied it to specify and verify four architectural design pat-
terns: versions of the Singleton, the Publisher-Subscriber, and the Blackboard pattern, as well as a
pattern for Blockchain architectures. The corresponding Isabelle theories are available in the entry
Architectural_Design_Patterns [Mar18b] from the archive of formal proofs. Figure 52 depicts an overview
of the corresponding verification efforts: Verification of the Singleton pattern (ST) consists of 180 lines of
Isabelle/HOL proof code, distributed amongst nine different propositions. The Publisher-Subscriber pattern
(PS), on the other hand, was verified in two propositions amounting up to 90 lines of proof code. With 547
lines of proof code, verification of the Blackboard pattern (BB) is more extensive than the verification of the
Singleton as well as the Publisher-Subscriber pattern. Its verification is distributed amongst four different
propositions. The most effort was required for the verification of our pattern for Blockchain architectures
(BC). Its verification required 2, 623 lines of proof code distributed amongst 72 different propositions.

Figure 52 shows that the verification of the Blockchain pattern was the most extensive one. However,
one needs to be careful when interpreting the data depicted in the figure, since the verification of the other
patterns was done in a hierarchical manner. Thus, verification results from the Singleton pattern were reused
for the verification of the Publisher-Subscriber pattern, which results in a lower effort for the verification of
the latter. Similarly, all the results from the Publisher-Subscriber pattern (and in turn those for the Singleton
pattern) were reused for the verification of the Blackboard pattern.

In the following, we are going to describe the verification of each pattern in more detail. First, we discuss
the verification of the Singleton, the Publisher-Subscriber, and the Blackboard pattern. Then, we conclude
the section with a discussion of the verification of the Blockchain pattern.

5.2.1. An Initial Pattern Hierarchy

As already mentioned above, verification of the Singleton pattern, the Publisher-Subscriber pattern, and the
Blackboard pattern build on top of each other and form what we call a pattern hierarchy. Figure 53 shows
the verification effort for each of the patterns in more detail: It shows the number of lines of proof code for
each proposition of each of the three patterns. In the following, we are going to discuss this hierarchy in more
detail, starting with the Singleton pattern, we proceed with the Publisher-Subscriber pattern, and conclude
our discussion with the Blackboard pattern.

Singleton. The leftmost graph in Fig. 53 depicts the effort for the verification of the Singleton pattern.
Essentially, we have two classes of verification results for this pattern:

• A key result for the pattern is formalized by property ts_prop, which guarantees that, in our version of
the Singleton, a singleton component is unique and always active.
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Fig. 52. Lines of proof code (black) and number of propositions (gray) for the verification of four ADPs.

• The second class of results leverages property ts_prop to provide rules to reason about the behavior of
singleton components. Remember that, in general, reasoning about the behavior of components requires
to consider activation constraints for that type of component. However, since a singleton component
is always active and unique, reasoning about its behavior can be done without considering activation
specifications, at all.

Publisher-Subscriber. In our version of the Publisher-Subscriber pattern, we modeled a publisher compo-
nent as an instance of a singleton. Thus, as already mentioned above, all the verification results for singleton
components from the Singleton pattern are available for publisher components in the Publisher-Subscriber
pattern. Hence, we get special rules to reason about the behavior of publisher components which we use for
the verification of two additional properties for a Publisher-Subscriber architecture:

• Property msgDelivery provides a characteristic property for such architectures which ensures that a
subscriber component indeed receives all the messages associated with events for which it is subscribed.

• Property conn1A provides a more technical result to support the reasoning about Publisher-Subscriber
architectures. It leverages the fact that a publisher is actually a singleton to provide an alternative version
of the basic rule to reason about connected components.

As can be observed from Fig. 53, the proofs for both properties are simple one-liners. Note, however, that
this is only due to the fact that the proofs are based on the results obtained from the Singleton pattern.

Blackboard. We modeled the Blackboard pattern as a version of the Publisher-Subscriber pattern in which
a blackboard takes the role of a publisher, and the knowledge sources correspond to subscriber components.
Thus, again, all the results from the Publisher-Subscriber pattern are available to support the verification
of the Blackboard pattern. The additional constraints added by the Blackboard pattern can then be used to
derive some additional guarantees of which one is of particular interest: Property pSolved guarantees that a
Blackboard architecture is able to solve a given problem, given that for each open sub-problem, there exists
a knowledge source which is able to address it. To proof this property, we first proved a more general result
pSolved_Ind by induction. The proof of it consisted of 391 lines of Isabelle/HOL code. The final property
then follows directly from this lemma.

5.2.2. A Pattern for Blockchain Architectures

To evaluate the approach on a larger case study, we formalized a pattern for Blockchain architectures based
on the proof-of-work consensus algorithm [Nak08]. We then verify a characteristic property for such archi-
tectures: persistence of blockchain entries [KRDO17]. To deal with the probabilistic nature of Blockchain,
we formalized an assumption about relative mining frequencies of honest and dishonest nodes, which allowed
us to verify persistence of entries in a non-probabilistic way. Of course, the validity of that assumption to be
true within a certain environment is probabilistic, but if it can be proven with a certain probability, then, our
results can be used to conclude that entries are persistent with that probability. While a detailed discussion
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Fig. 53. Propositions for the Singleton pattern, the Publisher-Subscriber pattern, and the Blackboard pattern.

of the blockchain pattern is beyond the scope of this paper, in the following, we provide an overview of the
required effort to verify the pattern.

The verification is split into three different Isabelle/HOL theories available at [Mar18b]:

• A theory Auxiliary which contains some auxiliary results, such as custom induction rules.
• A theory RF_LTL which contains a calculus for Blockchain architectures based on counting LTL [LMP10].
• A theory Blockchain which is the main theory containing the actual formalization of the pattern.

Figure 54 depicts the effort of the corresponding verification in terms of proof code for each proposition. The
key property is formalized as theorem blockchain-save (highlighted with gray color in the figure). Its proof
is by induction and consists of roughly 300 lines of Isabelle/HOL proof code. It required to introduce two
auxiliary concepts:

• a set his containing a blockchain’s history, i.e., its state during certain points in time and
• a function devBC, representing a blockchain’s development.

The main remaining propositions are then concerned with these two concepts:

• Lemma his_determ_ext shows that the history of a blockchain is deterministic, i.e., that it has a unique
state at each point in time.

• Lemma devExt_devop proves a basic property for blockchain developments, i.a., that it can only grow
by one through a mining process.

• Lemma devExt shows that the development of a blockchain (which is defined using its history), is indeed
a well-defined function.

6. Related Work

As mentioned in the introduction, architecture description languages (ADLs) have been an active area of
research and many approaches emerged to support the formal specification of architectures. Famous examples
are Weaves [GR91], Rapide [LKA+95], Wright [All97], AADL [FLV06], Acme [GMW00], xADL [DVdHT01],
and Autofocus [HF10]. Over the last years, specification and verification of dynamic aspects were of particular
interest. Table 2 provides an overview of some representative examples in this area. For each of them,
we list the underlying formalism as well as its support for dynamic aspects. To this end, we distinguish
between Combined and Separate approaches: While the former combine the specification of behavior with
the specification of architectural aspects, the latter strictly separate these two.

Similar to most of the approaches shown in Tab. 2, we also separate the specification of behavioral
aspects from that of structural aspects. The difference comes, however, in the verification: While most of

51



m
ax

ex

m
ax

p
ro
p

m
ax

le
ss

in
it

m
o
d
el

fw
d
b
c

fi
n
it
e
in
p
u
t

n
em

p
ty

in
p
u
t

on
ly
on

e

b
h
v
tr

ex

b
h
v
tr

in

b
h
v
tr

co
n
te
x
t

b
h
v
u
t

b
h
v
u
t
co
n
te
x
t

m
b
c
ex

m
b
c
p
ro
p

p
ow

ex

p
ow

p
ro
p

p
ow

eq

p
ow

m
b
c

p
ow

le
ss

p
ow

le
m
ax

p
ow

ge
lg
th

p
ow

le
lg
th

p
ow

m
on

o

p
ow

eq
u
al
s

p
ow

m
in
in
g
su
c

h
is

ac
t

h
is
P
re
v
p
ro
p

h
is
P
re
v
n
ex

le
ss

h
is

le

h
is

d
et
er
m

b
as
e

h
is
P
re
v
sa
m
e

h
is

d
et
er
m

ex
t

h
is

d
et
er
m

ex

h
is

d
et
er
m

h
is

d
et
er
m

th
e

d
ev
B
C

so
m
e

d
ev
B
C

ac
t

h
is

ex

d
ev
E
x
t
n
op

t
le
q

d
ev
E
x
t

d
ev
E
x
t
sa
m
e

d
ev
E
x
t
b
c

d
ev
E
x
t
gr
ea
te
st

d
ev
E
x
t
sh
if
t

d
ev
E
x
t
b
c
ge
q

h
is

b
c
em

p
ty

d
ev
E
x
t
d
ev
op

b
lo
ck
ch
ai
n
sa
ve

cc
ar
d
sa
m
e

cc
ar
d
ze
ro

cc
ar
d
in
c

cc
ar
d
m
on

o

cc
ar
d
u
b

cc
ar
d
su
m

cc
ar
d
ex

cc
ar
d
fr
eq

p
re
fi
x
sa
ve

p
re
fi
x
le
n
gt
h

gr
ow

m
in
in
g

le
n
gt
h
su
c
le
n
gt
h

u
g.
cc
ar
d
d
if
f
lg
th

gr
ow

m
on

o

tg
.c
ca
rd

d
if
f
lg
th

tr
u
p
p
er

b
ou

n
d

d
is
jE
3

ge
in
d
u
ct

m
y
in
d
u
ct

G
re
at
es
t
ex

le
n
at

ca
rd
E
x

ca
rd
sh
if
t

0

50

100

150

200

250

300

Fig. 54. Propositions for the Blockchain pattern.

approach dynamics specification

Darwin [MK96] S & C Π-Calculus [Mil99]
Wright [All97, ADG98] S CSP[Hoa78]

COMMUNITY [WLF01, WF02] S Unity [Cha89]/SM
Aguirre and Maibaum [AM02b, AM02a] S TL [MP92]

Π-ADL [Oqu04] S Π-Calculus [Mil99]
Reo [Arb04, BSAR06, KMLA11] S circuits

Castro et. al [CAPM10] C Category Theory
Canal et al. [CCS12] S LTS

Archery [SBR12, SMB15] S ACP [BK86]

Table 2. Overview of dynamic ADLs and Coordination Languages.

these approaches focus on operational specifications and automatic verification techniques, with our work
we aim towards axiomatic specifications and interactive theorem proving.

6.1. Axiomatic approaches

Even though they were not invented for the purpose of pattern verification, there exist some approaches
which focus on the axiomatic specification of architectures, in general. One of the first attempts in this
direction is done by Bergner [Ber96]. The author proposes an approach to specify component networks and
verify whether a given (runtime) component network satisfies its specification. The approach is implemented
in Spectrum [BFGea93], a functional programming language which allows for axiomatic specifications of
functions. Another approach comes from Fensel and Schnogge [FS97], which apply the KIV interactive theo-
rem prover [Rei95] to verify concrete architectures in the area of knowledge-based systems. Another example
is Spichkova [Spi07], which provides a mapping from a FOCUS [BS01] specification to a corresponding Is-
abelle/HOL [NPW02] theory. More recently, some attempts were made to apply interactive theorem proving
to the verification of architectural connectors. Li and Sun [LS13], for example, apply the Coq proof assis-
tant [BC13] to verify connectors specified in Reo [Arb04]. These approaches, both, apply interactive theorem
proving to verify architectures.
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While also these approaches indeed support axiomatic specifications and verification of architectures,
there are two major differences to our work.

6.1.1. Scope of Application

The first difference lies in the scope of the application: The approaches discussed so far apply axiomatic
verification at the level of concrete architectures which might be too expensive, in general. Thus, we argue,
that application of axiomatic verification should be restricted to architecture patterns, rather than concrete
architectures. Thus, the expenses would pay off since each result at the level of pattern applies for each
concrete architecture implementing the pattern. Just think about how many patterns employ a Singleton or
Publisher-Subscriber pattern.

6.1.2. Dynamic Aspects

Another difference lies in the expressiveness of the specification languages: The above approaches mainly
focus on the specification of static architectures. However, as shown at the beginning, some commonly used
patterns require also the specification of dynamic aspects, such as:

Component Activation Some patterns, such as the Singleton pattern or the Blackboard pattern intro-
duced in Sect. 1, require to specify activation and deactivation of components.

Reconfiguration Other patterns, such as the Publisher-Subscriber pattern or the Blackboard pattern,
require means to specify architecture reconfiguration, i.e., means to specify activation and deactivation
of connections between component ports.

There are two exceptions to this which support axiomatic specifications of even dynamic architectures.
They are closely related to our approach and thus deserve a detailed analysis.

6.2. Componentware

One example which uses a model similar to ours to formalize UML models is Componentware [Rau01]. Here,
the author provides means to specify architectural constraints in an UML-like notation [RJB04]. There are,
however, some differences to our specification approach which makes the specification of patterns difficult:

• The main restriction is probably the use of OCL for the specification of the behavior of components. As
our examples later on show, specifying component types involves the specification of temporal aspects
which is not supported by OCL and consequently not possible in their approach.

• Another restriction is the limited possibility for analysis of specifications. The approach does not provide
any calculus to analyze an axiomatic specification.

Nevertheless, the approach provides many interesting insights into axiomatic specification of dynamic ar-
chitectures and indeed the underlying model of dynamic architectures is similar to the model used in the
approach presented with this paper.

6.3. Community

Another, closely related approach is the one of Aguirre and Maibaum [AM02b, AM02a]. The approach builds
on top of CommUnity [FM97] and provides many interesting ideas found in our approach as well:

• It allows for the specification of abstract data types used by the components.
• It allows for the specification of classes which are similar to our notion of component types.
• Instance of classes as well as reconfigurations can then be specified using so-called subsystems which are

similar to our notion of architecture constraint specification.

There are, however, some subtle differences to our approach which limits its application for the specification
of patterns:
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• Instantiation of components as well as architecture reconfiguration must be explicitly triggered from
outside. However, as shown later on, for some patterns there is no such well-defined trigger, i.e., the
trigger may change in different implementations of the pattern.

• Their approach doesn’t support the notion of parametric interfaces which turn out to be useful when it
comes to the specification of patterns.

• The approach does not support hierarchical specifications which are very important when it comes to the
specification of patterns since they are usually specified on top of each other.

• The approach is based on an action-synchronous model of systems. Some patterns are, however, better
described using a time-synchronous model of communication.

Another key constraint of this approach is the lack of analysis methods to reason about such specifications.

7. Conclusion

This paper introduced FACTum, a methodology for the axiomatic specification and verification of archi-
tectural design patterns (ADPs). To conclude, we first summarize the major results presented in this paper
and discuss possible implications thereof. Then, we describe our overall research agenda and point to future
work which is needed to achieve our vision.

7.1. Summary

With this paper we present a model for (potentially dynamic) architectures and techniques to specify ADPs
over this model. Then, we introduced an Isabelle/HOL-based framework for the interactive verification of
architectures and provided an algorithm to map a pattern specification to a corresponding Isabelle/HOL
theory. To evaluate the approach, we implemented it in terms of an Eclipse/EMF application and applied it
for the verification of four different ADPs: the Singleton, the Publisher-Subscriber, the Blackboard pattern,
and a pattern for Blockchain architectures.

7.1.1. A Model of Dynamic Architectures

Since patterns exist for static as well as for dynamic architectures, our approach is based on a model of
dynamic architectures, which is described in detail in Sect. 2. Our model is a dynamic version of Broy’s
FOCUS model [BS01] and consists of the following main concepts:

• messages and ports (typed with sets of messages),
• interfaces consisting of input and output ports,
• a set of component types which consist of an interface, component parameters valuated with messages, and

associated behavior in terms of a causal set of behavior traces, i.e., streams of snapshots of a component
during execution,

• an architecture specification consisting of a set of architecture traces, i.e., streams of snapshots of an
architecture during execution,

• a projection operator, which extracts the behavior of a single component out of a given architecture trace,
and

• a composition operator which combines a set of component types with a given architecture specification.

7.1.2. Basic Specification Techniques

Based on the model presented in Sect. 2, we describe basic techniques for the axiomatic specification of
ADPs in Sect. 3. Such a specification consist of three parts: an interface specification, a component type
specification, and a specification of architectural constraints.

Interface specification. An interface specification consists of a specification of the abstract data types
used in a pattern, a set of port identifiers typed by these data types, and a set of interfaces over these ports.

54



Data types are specified using traditional, algebraic specification techniques [Bro96], and interfaces can be
specified using a graphical specification language called architecture diagrams.

To support the specification of related types of components (which is often required for the specification
of ADPs), we also provide a notion of parameterized component types. Therefore, interfaces may contain
so-called interface parameters which are typed by the abstract datatypes introduced for the pattern. Their
semantics requires that at least one component exists for each valuation of interface parameters, which
allows to introduce the notion of parameterized component variables. Such variables are guaranteed to be
interpreted only by components with corresponding parameter values and thus support the specification of
component types and architectural assumptions.

Component type specification. A component type specification consists of a set of axioms for each
interface to specify assertions about the behavior of components of a certain type. To specify these axioms,
we introduce the notion of behavior trace assertion, a type of linear temporal logic with component ports as
free variables.

Specifying architectural constraints. Architectural constraints are formulated over all interfaces to
specify assumptions about the activation/deactivation of components and their connections. To specify these
axioms, we introduce the notion of architecture trace assertions, which are again a type of linear temporal
logic with special predicates to denote component activation/deactivation and connections between the ports
of components.

Advanced specification techniques. To facilitate the specification of certain activation and connection
constraints, we propose various types of annotations for architecture diagrams. In general, annotations are
graphical synonyms for corresponding architectural assertions and their semantics is given by mapping them
to corresponding architecture trace assertions.

7.1.3. Hierarchical Specifications

A pattern specification may reuse other pattern specifications by instantiating the corresponding component
types. Pattern instantiations are expressed by annotating the interfaces of architecture diagrams by so-
called port mappings, i.e., mappings which relate the ports of instantiated components with the ports of the
corresponding instantiating component.

Hierarchical specifications can be used, for example, to address the specification (and verification) of
pattern variants. To this end, a variant of an existing pattern can be easily specified by adding additional
constraints about behavior, activation, and/or connections. For example, a basic variant of the Model-View-
Controller pattern [BMR+96] could be specified without direct coupling between model and views. Then,
one can extend this basic version with a constraint requiring the existence of connections between model
and view components.

7.1.4. Interactive Pattern Verification in Isabelle/HOL

Section 4 describes a framework for the interactive verification of ADPs specified using the techniques
presented in Sect. 3. To this end, we first present a formalization of the model introduced in Sect. 2 in
Isabelle/HOL. Then we describe an algorithm to map a given pattern specification to a corresponding Is-
abelle/HOL theory, preserving the specification’s semantics (as described in Sect. 3). To consider hierarchical
specifications, a pattern specification is mapped to a corresponding Isabelle/HOL locale [Bal04], which is
Isabelle’s way of dealing with parameterized theories. Thus, verification results for lower level patterns are
automatically transferred to higher level ones where they can be used for the verification of those patterns.

7.1.5. The FACTum Methodology

Section 5 combines all the results from the previous sections into an overall methodology for the axiomatic
specification and interactive verification of ADPs. The methodology consists of three phases:

Pattern Specification First, a pattern is specified using the techniques presented in Sect. 3.
Theory Creation Then, a corresponding Isabelle/HOL theory is generated using the algorithm presented

in Sect. 4.
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Pattern verification Finally, a pattern is verified using Isabelle’s structured proof language Isar [Wen07].

To support an architect in the specification of ADPs, FACTum comes with tool support in terms of a cor-
responding Eclipse/EMF implementation. FACTum Studio supports the graphical modeling of architecture
diagrams (as described in Sect. 3), which can then be enriched by corresponding textual specifications. To
support these textual specifications, the tool also provides rigorous type checking mechanisms for the speci-
fication of datatypes, component types, and architectural assumptions (as described in Sect. 3). Finally, the
tool implements the algorithm presented in Sect. 4 to generate corresponding Isabelle/HOL theories.

7.1.6. Running Examples & Case Study

Our approach is demonstrated in terms of three running examples and evaluated by means of a larger case
study from the domain of blockchain architectures.

Running examples. We demonstrated our approach by means of three running examples: the Singleton,
the Publisher-Subscriber, and the Blackboard pattern. For each pattern, we provided a formal specification
of the pattern’s assumptions and corresponding guarantees. Then, we verified each of them in Isabelle/HOL
which resulted in a verification effort of around 3, 500 lines of Isabelle/HOL proof code. To demonstrate
hierarchical specification and verification, the publisher component is modeled as an instance of the Singleton
and the Blackboard pattern is specified as an instance of the Publisher-Subscriber pattern.

Case study: Verified blockchain architectures. To evaluate the approach on a larger case study, we
applied it to verify a pattern for Blockchain architectures. To this end, we first applied the specification tech-
niques from Sect. 3 to formalize the patterns assumptions as well as an important guarantee for Blockchain ar-
chitectures: persistence of blockchain entries. We then map the specification to a corresponding Isabelle/HOL
theory and the guarantee to a corresponding Isabelle/HOL theorem (using the algorithm presented in Sect. 4)
and verify the guarantee by proving the theorem. Verification of this pattern resulted in roughly 3, 000 lines
of Isabelle/HOL proof code.

7.2. Implications

The methodology presented in this paper can be used to formally investigate ADPs. Thereby, we address
both problems with pattern specifications identified in Sect. 1.

7.2.1. Problem 1: Missing Constraints

Verifying an ADP may reveal constraints assumed by the pattern which are important to meet its guarantee,
but which are not mentioned in any specification of the pattern so far. While the major part of such missing
constraints is usually concerned with details of an architecture, some of them can also be of more fundamental
nature. For example, in this paper, we discover around 16 assumptions for different ADPs. While many of
them are concerned with details about an architecture, two of them may be considered fundamental: The first
one is assumed by Blackboard architectures and requires problems to be ordered by a subproblem relation
which is required to be well-founded. This is a fundamental constraint which needs to be ensured before
applying the pattern. Otherwise, the corresponding architecture will not be able to solve certain problems
and the pattern would not fulfill its purpose. A second fundamental constraint concerns relative mining
frequencies in blockchain architectures. To apply the pattern, one needs to ensure that it will indeed be
highly unlikely that the mining frequency of untrusted nodes exceeds the mining frequency of trusted nodes
by the number of confirmation blocks. Otherwise, entries of a blockchain may be subject to modification by
untrusted entities and the pattern would fail its guarantee.

7.2.2. Problem 2: Unnecessary Constraints

The support for verification also has the potential to uncover unnecessary constraints in a pattern specifi-
cation. If certain assumptions a pattern makes about an architecture are not used for the verification of its
guarantee, the corresponding constraints can be removed and the scope of the pattern is increased. For exam-
ple, many descriptions of blockchain architectures require the data entries to be financial transactions with
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corresponding private and public keys. However, these assumptions are not required to guarantee persistence
of entries and they unnecessarily restrict the application scope of the pattern.

Note, however, that the problem of too strong assumptions, compared to the problem of too weak assump-
tions, cannot be guaranteed to be solved by verifying the corresponding ADP. A proof of an architectural
guarantee may indeed contain unnecessary references to architectural constraints. However, if the proof does
not contain any reference to an architectural constraint, the corresponding architectural design constraint
can be safely removed from a pattern’s specification.

7.3. Limitations

A critical look at the results presented in this paper reveals two major limitations: the lack of support for
non-functional aspects and usability of the approach.

7.3.1. Non-functional Aspects

When it comes to ADPs, non-functional aspects play an important role. Many patterns are actually invented
to address certain non-functional aspects, such as maintainability. With the approach presented in this paper
it is not possible to investigate whether or not a certain pattern really satisfies certain non-functional aspects.
Rather, with our approach we focus on the correct implementation of a pattern and we consider them as
lemmata to support the verification of architectures using these patterns. Nevertheless, we admit that non-
functional aspects play an important role and indeed a lot of research in the architecture community is
devoted to this aspect. One line of research uses a quantitative approach and aims towards the development
of pattern-specific cost models for certain quality attributes [KKB+99, Mar10]. Another line of research
follows a more qualitative approach and uses so-called quality attribute scenarios [BCK07] or grounded
theory [GME17] to evaluate quality attributes for patterns.

7.3.2. Target Audience

Using interactive theorem proving make the approach presented in this thesis very general and thus able to
address the abstract nature of patterns. However, it makes the approach also difficult to apply, since ITP
comes with a steep learning curve and is not yet well-known in the architecture community. The algorithm and
its implementation in Eclipse/EMF presented in this paper provide first steps towards making the approach
accessible to a broader audience. Moreover, we also provide a calculus to support the interactive verification
of patterns in Isabelle/HOL [Mar17b, Mar18a] to support the verification. However, users still need to have
some expertise in ITP to efficiently use the approach and thus it might be difficult to apply for practitioners.
Thus, as of now, the target group of the approach is mainly researchers in software architectures. In the
next section, however, we also provide some ideas for future work to make the approach usable also for
practitioners.

7.4. Outlook and Future Work

Figure 55 depicts our overall research agenda in which we envision a repository containing a growing collection
of verified ADPs. Researchers can connect to the repository and fill it with verification results for existing
or even new ADPs. Thereby, they can leverage the hierarchical nature of patterns and verify higher-level
patterns using available results from lower level patterns. When verifying an architecture, an architect can
connect to the repository and verify the architecture against the assumptions provided by the ADPs. The
corresponding guarantee is then automatically transferred to the architecture and can be used to support
its verification.

To achieve our vision, future work is required in at least three areas: advanced support for graphical
specifications, the development of a pattern verification language, and the integration of our approach into
current architecture verification practice.
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Fig. 55. Research agenda: the repository of verified ADPs.

7.4.1. Advanced Support for Graphical Notation

With this paper, we introduce the notion of architecture diagrams (Sect. 3.4) to support the graphical speci-
fication of interfaces and some common architectural constraints. So far, however, expressiveness of graphical
annotations is limited to activation and connection constraints. To support the graphical specification of more
advanced constraints, future work should investigate possibilities to extend the notion of architecture dia-
grams. One possible extension, for example, could be the introduction of dependencies between components
of a certain type in a notation similar to UML composition. Then, activation and connection annotations
could be interpreted relative to such dependencies.

7.4.2. Pattern Verification Language

With this paper, we provide a first step towards interactive pattern verification: An architect can specify
a pattern in Eclipse/EMF and then generate a corresponding Isabelle/HOL theory out of it. Then he can
verify the pattern in Isabelle/HOL using a corresponding calculus.

However, architects are usually not trained in interactive theorem proving and future work should in-
vestigate possibilities to further support an architect in the verification process. A first step could be the
development of a more abstract proof language which allows an architect to sketch a proof using abstractions
he is familiar with. The abstract proof should then be translated to a corresponding Isabelle/Isar proof and
verified by Isabelle.

7.4.3. Integration into Architecture Verification

Another crucial step to achieve our vision concerns the integration of verification results obtained for ADPs
to support the verification of architectures. Compared to the verification of ADPs (which can be reused
for different architectures), verification of architectures against ADPs has to be done for each architecture,
which is why future work should investigate possibilities to automate this step.
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Behavior terms: syntax

v ∈ DV s =⇒ “v” ∈ s
ΣBTDV (ps) ,

p ∈ PID =⇒ “p” ∈ s
ΣBTDV (ps)[for tp(p) = s] ,

f ∈ F 0 =⇒ “f” ∈ s
ΣBTDV (ps) [for sf(f)(0) = s] ,

f ∈ Fn+1 ∧
“t1” ∈ s1

ΣBTDV (ps), · · · ,
“tn+1” ∈ sn+1

ΣBTDV (ps)





=⇒





“f(t1, · · · , tn+1)” ∈ s
ΣBTDV (ps)

[for n ∈ N, sf(f)(0) = s, and
sf(f)(1) = s1, · · · , sf(f)(n+1) = sn+1] .

Fig. 56. Inductive definition of behavior terms.

A. Behavior Trace Assertions

Behavior trace assertions are formulated over data type variables, i.e., variables representing messages of
a certain type. Thus, given a signature Σ = (S, F,B), we assume the existence of a family of data type
variables DV = (DV s)s∈S and rigid data type variables DV ′. Both types of variables are interpreted over
an algebra A =

(
(As)s∈S , (fA)f∈F , (pA)p∈B

)
∈ A(Σ) for signature Σ (where Fn and Bn denote all the

function/predicate symbols of arity n, and sf and sp assign a tuple of sorts to each function/predicate symbol,
respectively6). Thereby, data type variable assignments ι = (ιs)s∈S consist of interpretations ιs : DV s → As,
which are newly evaluated at each point in time. Rigid data type variables, on the other hand, are interpreted
only once for the whole execution by a so-called rigid data type variable assignment ι′ = (ι′s)s∈S . With IDV

A
we denote the set of all data type variable assignments for data type variables DV in algebra A and with
I ′DV ′

A the set of all rigid data type variable assignments for rigid data type variables DV ′ in algebra A,
respectively.

A.1. Behavior terms

A.1.1. Syntax

Definition 9 (Behavior terms: syntax). The set of all behavior terms of sort s ∈ S over a signature
Σ = (S, F,B), datatype variables DV , and port specification ps = (PID , tp), is the smallest set s

ΣBTDV (ps)
satisfying the equations of Fig. 56. The set of all behavior terms of all sorts is denoted by ΣBTDV (ps).

A.1.2. Semantics

Definition 10 (Behavior terms: semantics). The semantics of behavior terms ΣBTDV (ps), formulated
over port specification ps = (PID , tp), is defined over an algebra A ∈ A(Σ) with corresponding data type
variable assignments ι ∈ IDV

A and a valuation µ ∈ P of a set of ports P with corresponding interpretation
δ : PID → P for the port identifiers of ps. It is given by a semantic function ι

A
J_Kδµ :

−→⋃
s∈S( sΣBTDV (ps) →

As), defined recursively by the equations provided in Fig. 57.

A.2. Behavior assertions

A.2.1. Syntax

Definition 11 (Behavior assertions: syntax). The set of all behavior assertions over a signature Σ =
(S, F,B), datatype variables DV , and port specification ps = (PID , tp), is the smallest set ΣBADV (ps)
satisfying the equations of Fig. 58.

6 For function symbols, the sort for the return type is assumed to be on position 0 of the tuple.



Behavior terms: semantics
ι

A
J“v”Kδµ = ιs(v) [for v ∈ DV s] ,
ι

A
J“p”Kδµ = µ(δ(p)) [for p ∈ PID ] ,
ι

A
J“f”Kδµ = Af [for function symbol f ∈ F 0] ,

ι

A
J“f(t1, · · · , tn)”Kδµ =

{
Af
( ι

A
J“t1”Kδµ, · · · ,

ι

A
J“tn”Kδµ

)

[for function symbol f ∈ Fn+1] .

Fig. 57. Recursive definition of semantic function for behavior terms.

Behavior assertions: syntax

“true” ∈ ΣBADV (ps) ,

“false” ∈ ΣBADV (ps) ,

b ∈ B0 =⇒ “b” ∈ ΣBADV (ps) ,

b ∈ Bn+1 ∧
“t1” ∈ s1

ΣBTDV (ps), · · · ,
“tn+1” ∈ sn+1

ΣBTDV (ps)





=⇒
{

“b(t1, · · · , tn+1)” ∈ ΣBADV (ps)

[for n ∈ N and sp(b)(1) = s1, · · · , sp(b)(n+1) = sn+1] ,

“t”, “t′” ∈ s
ΣBTDV (ps) =⇒ “t = t′” ∈ ΣBADV (ps) [for some s ∈ S] ,

“φ” ∈ ΣBADV (ps) =⇒ “¬φ” ∈ ΣBADV (ps) ,

“φ”, “φ′” ∈ ΣBADV (ps) =⇒





“φ ∧ φ′” ∈ ΣBADV (ps),

“φ ∨ φ′” ∈ ΣBADV (ps),

“φ −→ φ′” ∈ ΣBADV (ps),

“φ←→ φ′” ∈ ΣBADV (ps). ,

“φ” ∈ ΣBADV (ps) ∧ x ∈ DV s =⇒
{

“∀x : φ” ∈ ΣBADV (ps),

“∃x : φ” ∈ ΣBADV (ps) [for s ∈ S]. .

Fig. 58. Inductive definition of behavior assertions.

A.2.2. Semantics

Definition 12 (Behavior assertions: semantics). The semantics of behavior assertions ΣBADV (ps),
formulated over port specification ps = (PID , tp), is defined over an algebra A ∈ A(Σ) with corresponding
data type variable assignments ι ∈ IDV

A and an interpretation δ : PID → P for the port identifiers of ps

with concrete ports of a set P. It is given by a relation |=
A,ι
δ ⊆ P × ΣBADV (ps) defined recursively by the

equations provided in Fig. 59

A.3. Behavior trace assertions

A.3.1. Syntax

Definition 13 (Behavior trace assertions: syntax). The set of all behavior trace assertions over a sig-
nature Σ = (S, F,B), disjoint sets of datatype variables DV and rigid datatype variables DV ′, and port
specification ps = (PID , tp), is the smallest set ΣBTADV ′

DV (ps) satisfying the equations of Fig. 60.
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µ |=
A,ι
δ “true” ,

¬
(
µ |=

A,ι
δ “false”

)
,

µ |=
A,ι
δ “b” ⇐⇒ Ab [for b ∈ B0] ,

µ |=
A,ι
δ “b(t1, · · · , tn)” ⇐⇒ Ab

( ι

A
J“t1”Kδµ, · · · ,

ι

A
J“tn”Kδµ

)
[for b ∈ Bn+1] ,

µ |=
A,ι
δ “t = t′” ⇐⇒ ι

A
J“t”Kδµ =

ι

A
J“t′”Kδµ ,

µ |=
A,ι
δ “φ ∧ φ ⇐⇒ µ |=

A,ι
δ “φ” ∧ µ |=

A,ι
δ “φ′” ,

µ |=
A,ι
δ “φ ∨ φ′” ⇐⇒ µ |=

A,ι
δ “φ” ∧ µ |=

A,ι
δ “φ′” ,

µ |=
A,ι
δ “φ −→ φ′” ⇐⇒ µ |=

A,ι
δ “φ” ∧ µ |=

A,ι
δ “φ′” ,

µ |=
A,ι
δ “φ←→ φ′” ⇐⇒ µ |=

A,ι
δ “φ” ∧ µ |=

A,ι
δ “φ′” ,

µ |=
A,ι
δ “∃x : φ” ⇐⇒

{
∃x′ ∈ As : µ |=

A,ι[s : x 7→x ′]
δ “φ”

[for s ∈ S and x ∈ DV s] ,

µ |=
A,ι
δ “∀x : φ” ⇐⇒

{
∀x′ ∈ As : µ |=

A,ι[s : x 7→x ′]
δ “φ”

[for s ∈ S and x ∈ DV s] ,

Fig. 59. Recursive definition of satisfaction relation for behavior assertions.

Behavior trace assertions: syntax

“true”, “false” ∈ ΣBTADV ′
DV (ps),

φ ∈ ΣBADV∪DV ′(ps) =⇒ φ ∈ ΣBTADV ′
DV (ps),

“γ” ∈ ΣBTADV ′
DV (ps) =⇒ “¬γ”, “©γ”, “♦γ”, “�γ” ∈ ΣBTADV ′

DV (ps),

“γ”, “γ′” ∈ ΣBTADV ′
DV (ps) =⇒

{
“γ ∧ γ′”, “γ ∨ γ′”,
“γ −→ γ′”, “

(
γ′ U γ

)
” ∈ ΣBTADV ′

DV (ps),

x ∈ DV ′ ∧
“γ” ∈ ΣBTADV ′

DV (ps)

}
=⇒

{
“∀x : γ” ∈ ΣBTADV ′

DV (ps),

“∃x : γ” ∈ ΣBTADV ′
DV (ps).

Fig. 60. Inductive definition of behavior trace assertions.

A.3.2. Semantics

Definition 14 (Behavior trace assertions: semantics). The semantics of behavior trace assertions
ΣBTADV ′

DV (ps), formulated over port specification ps = (PID , tp), is defined over an algebra A ∈ A(Σ) with
corresponding rigid data type variable assignments ι′ ∈ I ′DV ′

A and an interpretation δ : PID → P for the
port identifiers of ps with concrete ports of a set P. It is given by a relation |=

A,ι′
δ ⊆

(
(P)∞×N

)
×ΣBADV (ps)

defined recursively by the equations provided in Fig. 61.
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(t, n) |=
A,ι′
δ “true” ,

¬
(
(t, n) |=

A,ι′
δ “false”

)
,

(t, n) |=
A,ι′
δ φ ⇐⇒ ∀ι ∈ IDV

A : t(n) |=
A,ι∪ι′φ [for φ ∈ ΣBADV (ps)],

(t, n) |=
A,ι′
δ “©γ” ⇐⇒ (t, n+ 1) |=

A,ι′
δ “γ”,

(t, n) |=
A,ι′
δ “♦γ” ⇐⇒ ∃n′ ≥ n : (t, n′) |=

A,ι′
δ “γ”,

(t, n) |=
A,ι′
δ “�γ” ⇐⇒ ∀n′ ≥ n : (t, n′) |=

A,ι′
δ “γ”,

(t, n) |=
A,ι′
δ “γ′ U γ” ⇐⇒

{
∃n′ ≥ n : (t, n′) |=

A,ι′
δ “γ” ∧

∀n ≤
˙
m < n′ : (t,m) |=

A,ι′
δ “γ′”,

(t, n) |=
A,ι′

“∃x : γ” ⇐⇒
{
∃x′ ∈ As : (t, n) |=

A,ι′[s : x 7→x ′]
δ “γ”

[for s ∈ S and x ∈ DV s] ,

(t, n) |=
A,ι′

“∀x : γ” ⇐⇒
{
∀x′ ∈ As : (t, n) |=

A,ι′[s : x 7→x ′]
δ “γ”

[for s ∈ S and x ∈ DV s] .

Fig. 61. Recursive definition of satisfaction relation for behavior trace assertions.
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v ∈ DV s =⇒ “v” ∈ s
ΣCTDV

CV (is) ,

v ∈ (CV i)ω ∧ p ∈ port(if(i)) =⇒
{

“v.p” ∈ s
ΣCTDV

CV (is)

[for i ∈ I and tp(p) = s] ,

f ∈ F 0 =⇒ “f” ∈ s
ΣCTDV

CV (is) [for sf(f)(0) = s] ,
f ∈ Fn+1 ∧
“t1” ∈ s1

ΣCTDV
CV (is), · · · ,

“tn+1” ∈ sn+1

ΣCTDV
CV (is)





=⇒





“f(t1, · · · , tn+1)” ∈ s
ΣCTDV

CV (is)

[for n ∈ N, sf(f)(0) = s, and
sf(f)(1) = s1, · · · , sf(f)(n+1) = sn+1] .

Fig. 62. Inductive definition of architecture terms.

B. Architecture Trace Assertions

In addition to variables for data types (as introduced already for behavior trace assertions), architecture
trace assertions are formulated also over component variables, i.e., variables representing components of a
certain type. Thus, given a signature Σ and an interface specification is = (I , if) over port specification
(PID , tp), we assume the existence of a family of component variables CV = (CV i)i∈I with component
variables CV i =

(
(CV i)ω

)
ω : p 7→DtT tp(p)(Σ,DV )

for each interface i ∈ I and each valuation of component
parameters ω. In addition, we assume the existence of a corresponding family of rigid component variables
CV ′.

Component variables are interpreted over a family of components C = (Cct)ct∈CTI by a so-called com-
ponent variable assignment κ = (κi)i∈I , with κi =

(
(κi)ω

)
ω : p7→DtT tp(p)(Σ,DV )

and κi = (κi)ω : (CV i)ω →
Cε(i),λp∈par(if(i)) : AJω(p)K (for a given interface interpretation ε and port interpretation δ). Again, we denote
with κ′ a corresponding rigid component variable assignment for rigid component variables. The set of all
component variable assignments is denoted with KCV

C and the set of all rigid component variable assignments
with K′CV ′

C , respectively.

B.1. Architecture Terms

B.1.1. Syntax

Definition 15 (Architecture terms: syntax). The set of all architecture terms of sort s ∈ S over a
signature Σ = (S, F,B), interface specification is = (I , if) over port specification (PID , tp), datatype variables
DV , and component variables CV , is the smallest set s

ΣCTDV
CV (is), satisfying the equations of Fig. 62. The

set of all architecture terms of all sorts is denoted by ΣCTDV
CV (is).

B.1.2. Semantics

Definition 16 (Architecture terms: semantics). The semantics of architecture terms ΣCTDV
CV (is), for-

mulated over interface specification is = (I , if) and port specification (PID , tp), is defined over an algebra
A ∈ A(Σ) with corresponding data type variable assignments ι ∈ IDV

A , an architecture snapshot as ∈ ASCT
with corresponding port interpretation δ : PID → P for the port identifiers of ps, and component interpreta-
tion κ ∈ KCV

C . It is given by a semantic function ι
AJ_Kκδ (as) :

−→⋃
s∈S( sΣCTDV

CV (is) → As), defined recursively
by the equations provided in Fig. 63.



Architecture terms: semantics
ι
AJ“v”Kκδ (as) = ιs(v) [for v ∈ DV s] ,

ι
AJ“v.p”Kκδ (as) =

{
valas

((
(κi)ω(v),

(
δ(p)

)))

[for i ∈ I and v ∈ (CV i)ω] ,
ι
AJ“f”Kκδ (as) = Af [for function symbol f ∈ F 0] ,

ι
AJ“f(t1, · · · , tn)”Kκδ (as) =

{
Af
( ι
AJ“t1”Kκδ (as), · · · , ιAJ“tn”Kκδ (as)

)

[for function symbol f ∈ Fn+1] .

Fig. 63. Recursive definition of semantic function for architecture terms.

Architecture assertions: syntax

“true” ∈ ΣCADV
CV (is) ,

“false” ∈ ΣCADV
CV (is) ,

b ∈ B0 =⇒ “b” ∈ ΣCADV
CV (is) ,

b ∈ Bn+1 ∧
“t1” ∈ s1

ΣCTDV
CV (is), · · · ,

“tn+1” ∈ sn+1

ΣCTDV
CV (is)





=⇒





“b(t1, · · · , tn+1)” ∈ ΣCADV
CV (is)

[for n ∈ N and
sp(b)(1) = s1, · · · , sp(b)(n+1) = sn+1] ,

“t”, “t′” ∈ s
ΣCTDV

CV (is) =⇒ “t = t′” ∈ ΣCADV
CV (is) [for some s ∈ S] ,

“φ” ∈ ΣCADV
CV (is) =⇒ “¬φ” ∈ ΣCADV

CV (is) ,

“φ”, “φ′” ∈ ΣCADV
CV (is) =⇒





“φ ∧ φ′” ∈ ΣCADV
CV (is),

“φ ∨ φ′” ∈ ΣCADV
CV (is),

“φ −→ φ′” ∈ ΣCADV
CV (is),

“φ←→ φ′” ∈ ΣCADV
CV (is). ,

“φ” ∈ ΣCADV
CV (is) ∧ x ∈ DV s =⇒

{
“∀x : φ” ∈ ΣCADV

CV (is),

“∃x : φ” ∈ ΣCADV
CV (is) [for s ∈ S]. ,

“φ” ∈ ΣCADV
CV (is) ∧ x ∈ (CV i)ω =⇒

{
“∀x : φ” ∈ ΣCADV

CV (is),

“∃x : φ” ∈ ΣCADV
CV (is) [for i ∈ I ]. ,

v ∈ (CV i)ω ∧ p ∈ port(if(i)) =⇒ “v̂.p” ∈ ΣCADV
CV (is) [for i ∈ I ] ,

v ∈ (CV i)ω =⇒ “ v ” ∈ ΣCADV
CV (is) [for i ∈ I ] ,

v ∈ (CV i)ω ∧ v′ ∈ (CV j)τ∧
p ∈ in(if(i)) ∧ p′ ∈ out(if(j))

}
=⇒

{
“v.p v′.p′” ∈ ΣCADV

CV (is),

[for i, j ∈ I ]. .

Fig. 64. Inductive definition of architecture assertions.

B.2. Architecture Assertions

B.2.1. Syntax

Definition 17 (Architecture assertions: syntax). The set of all architecture assertions over a signature
Σ, interface specification is = (I , if) over port specification (PID , tp), data type variables DV , and component
variables CV is the smallest set ΣCADV

CV (is) satisfying the equations in Fig. 64.



Architecture assertions: semantics

as |=
A,ι

ε,δ,κ
“true” ,

¬(as |=
A,ι

ε,δ,κ
“false”) ,

as |=
A,ι

ε,δ,κ
“b” ⇐⇒ Ab [for b ∈ B0] ,

as |=
A,ι

ε,δ,κ
“b(t1, · · · , tn)” ⇐⇒ Ab

( ι
AJ“t1”KκJ(as), · · · , ιAJ“tn”KκJ(as)

)
[for b ∈ Bn+1] ,

as |=
A,ι

ε,δ,κ
“t = t′ ⇐⇒ ι

AJ“t”KκJ(as) =
ι
AJ“t′”KκJ(as) ,

as |=
A,ι

ε,δ,κ
“φ ∧ φ′” ⇐⇒ as |=

A,ι

ε,δ,κ
“φ” ∧ as |=

A,ι

ε,δ,κ
“φ′” ,

as |=
A,ι

ε,δ,κ
“φ ∨ φ′” ⇐⇒ as |=

A,ι

ε,δ,κ
“φ” ∨ as |=

A,ι

ε,δ,κ
“φ′” ,

as |=
A,ι

ε,δ,κ
“φ −→ φ′” ⇐⇒ as |=

A,ι

ε,δ,κ
“φ” =⇒ as |=

A,ι

ε,δ,κ
“φ′” ,

as |=
A,ι

ε,δ,κ
“φ←→ φ′” ⇐⇒ as |=

A,ι

ε,δ,κ
“φ” ⇐⇒ as |=

A,ι

ε,δ,κ
“φ′” ,

as |=
A,ι

ε,δ,κ
“∃x : φ” ⇐⇒

{
∃x′ ∈ As : as |=

A,ι[s : x 7→x ′]

ε,δ,κ
“φ”

[for s ∈ S and x ∈ DV s] ,

as |=
A,ι

ε,δ,κ
“∀x : φ” ⇐⇒

{
∀x′ ∈ As : as |=

A,ι[s : x 7→x ′]

ε,δ,κ
“φ”

[for s ∈ S and x ∈ DV s] ,

as |=
A,ι

ε,δ,κ
“∃x : φ” ⇐⇒

{
∃x′ ∈ C(ε(i),λp : AJω(p)K) : as |=

A,ι

ε,δ,κ[i : ω 7→κi [ω : x 7→x ′]]
“φ”

[for i ∈ I and x ∈ (CV i)ω] ,

as |=
A,ι

ε,δ,κ
“∀x : φ” ⇐⇒

{
∀x′ ∈ C(ε(i),λp : AJω(p)K) : as |=

A,ι

ε,δ,κ[i : ω 7→κi [ω : x 7→x ′]]
“φ”

[for i ∈ I and x ∈ (CV i)ω] ,

as |=
A,ι

ε,δ,κ
“v̂.p” ⇐⇒

{
valas

((
(κi)ω(v),

(
δ(p)

)))
6= ∅

[for i ∈ I , v ∈ (CV i)ω, and p ∈ port(if(i))] ,

as |=
A,ι

ε,δ,κ
“ v ” ⇐⇒

{|(κi)ω(v)|as
[for i ∈ I , and v ∈ (CV i)ω] ,

as |=
A,ι

ε,δ,κ
“v.p v′.p′” ⇐⇒





((
(κi)ω(v′), δ(p′)

))
∈ CN as

((
(κj)τ (v), δ(p)

))

[for i ∈ I , v ∈ (CV i)ω, p ∈ in(if(i)),
j ∈ I , v′ ∈ (CV j)ω, p′ ∈ out(if(j))] .

Fig. 65. Recursive definition of satisfaction relation for architecture assertions.

B.2.2. Semantics

Definition 18 (Architecture assertion: semantics). The semantics of architecture assertions
ΣCADV

CV (is), formulated over interface specification is = (I , if) and port specification (PID , tp), is defined
over an algebra A ∈ A(Σ) with corresponding data type variable assignments ι ∈ IDV

A , interface interpreta-
tion ε : I → CTI , an interpretation δ : PID → P for the port identifiers of ps, and component interpretation
κ ∈ KCV

C . It is given by a relation |=
A,ι

ε,δ,κ ⊆ ASCT × ΣCADV
CV (is) defined recursively by the equations provided

in Fig. 65



Architecture trace assertions: syntax

“true” ∈ ΣCTA
(DV ,CV )
(DV ′,CV ′)(is) ,

“false” ∈ ΣCTA
(DV ,CV )
(DV ′,CV ′)(is) ,

φ ∈ ΣCADV∪DV ′
CV∪CV ′ (is) =⇒ φ ∈ ΣCTA

(DV ,CV )
(DV ′,CV ′)(is) ,

“γ” ∈ ΣCTA
(DV ,CV )
(DV ′,CV ′)(is) =⇒ “¬γ” ∈ ΣCTA

(DV ,CV )
(DV ′,CV ′)(is) ,

“γ”, “γ′” ∈ ΣCTA
(DV ,CV )
(DV ′,CV ′)(is) =⇒





“γ ∧ γ′” ∈ ΣCTA
(DV ,CV )
(DV ′,CV ′)(is),

“γ ∨ γ′” ∈ ΣCTA
(DV ,CV )
(DV ′,CV ′)(is),

“γ −→ γ′” ∈ ΣCTA
(DV ,CV )
(DV ′,CV ′)(is),

“γ ←→ γ′” ∈ ΣCTA
(DV ,CV )
(DV ′,CV ′)(is). ,

“γ” ∈ ΣCTA
(DV ,CV )
(DV ′,CV ′)(is) =⇒ “©γ”, “♦γ”, “�γ” ∈ ΣCTA

(DV ,CV )
(DV ′,CV ′)(is) ,

“γ”, “γ′” ∈ ΣCTA
(DV ,CV )
(DV ′,CV ′)(is) =⇒

{
“γ U γ′” ∈ ΣCTA

(DV ,CV )
(DV ′,CV ′)(is),

“γ W γ′” ∈ ΣCTA
(DV ,CV )
(DV ′,CV ′)(is). ,

x ∈ (DV ′s)ω ∧
“γ” ∈ ΣCTA

(DV ,CV )
(DV ′,CV ′)(is)



 =⇒

{
“∀x : γ” ∈ ΣCTA

(DV ,CV )
(DV ′,CV ′)(is),

“∃x : γ” ∈ ΣCTA
(DV ,CV )
(DV ′,CV ′)(is) [for s ∈ S]. ,

x ∈ (CV ′i)ω ∧
“γ” ∈ ΣCTA

(DV ,CV )
(DV ′,CV ′)(is)

}
=⇒

{
“∀x : γ” ∈ ΣCTA

(DV ,CV )
(DV ′,CV ′)(is),

“∃x : γ” ∈ ΣCTA
(DV ,CV )
(DV ′,CV ′)(is) [for i ∈ I ]. .

Fig. 66. Inductive definition of architecture trace assertions.

B.3. Architecture Trace Assertions

B.3.1. Syntax

Definition 19 (Architecture trace assertion: syntax). The set of all architecture trace assertions over
signature Σ, interface specification is = (I , if) over port specification (PID , tp), data type variables DV ,
rigid data type variables DV ′, component variables CV , and rigid component variables CV ′ is the smallest
set ΣCTA

(DV ,CV )
(DV ′,CV ′)(is) satisfying the equations in Fig. 66.

B.3.2. Semantics

Definition 20 (Architecture trace assertion: semantics). The semantics of architecture trace asser-
tions ΣCTA

(DV ,CV )
(DV ′,CV ′)(is), formulated over interface specification is = (I , if) and port specification (PID , tp),

is defined over an algebra A ∈ A(Σ) with corresponding rigid data type variable assignments ι′ ∈ I ′DV ′

A ,
interface interpretation ε : I → CTI , an interpretation δ : PID → P for the port identifiers of ps, and rigid
component interpretation κ′ ∈ K′CV

C . It is given by a relation |=
A,ι′
ε,δ,κ′

⊆
(
(ASCT )∞ × N

)
× ΣCTA

(DV ,CV )
(DV ′,CV ′)(is)

defined recursively by the equations provided in Fig. 67



Architecture trace assertions: semantics

(t, n) |=
A,ι′
ε,δ,κ′

“true” ,

¬
(
(t, n) |=

A,ι′
ε,δ,κ′

“false”
)
,

(t, n) |=
A,ι′
ε,δ,κ′

φ ⇐⇒ ∀ι ∈ IDV
A , κ ∈ KCV

C : t(n) |=
A,ι∪ι′
ε,δ,κ∪κ′

φ ,

(t, n) |=
A,ι′
ε,δ,κ′

“γ ∧ γ′” ⇐⇒ (t, n) |=
A,ι′
ε,δ,κ′

“γ” ∧ (t, n) |=
A,ι′
ε,δ,κ′

“γ′” ,

(t, n) |=
A,ι′
ε,δ,κ′

“γ ∨ γ′” ⇐⇒ (t, n) |=
A,ι′
ε,δ,κ′

“γ” ∨ (t, n) |=
A,ι′
ε,δ,κ′

“γ′” ,

(t, n) |=
A,ι′
ε,δ,κ′

“γ −→ γ′” ⇐⇒ (t, n) |=
A,ι′
ε,δ,κ′

“γ” =⇒ (t, n) |=
A,ι′
ε,δ,κ′

“γ′” ,

(t, n) |=
A,ι′
ε,δ,κ′

“γ ←→ γ′” ⇐⇒ (t, n) |=
A,ι′
ε,δ,κ′

“γ” ⇐⇒ (t, n) |=
A,ι′
ε,δ,κ′

“γ′” ,

(t, n) |=
A,ι′
ε,δ,κ′

“©γ” ⇐⇒ (t, n+ 1) |=
A,ι′
ε,δ,κ′

“γ” ,

(t, n) |=
A,ι′
ε,δ,κ′

“♦γ” ⇐⇒ ∃n′ ≥ n : (t, n′) |=
A,ι′
ε,δ,κ′

“γ” ,

(t, n) |=
A,ι′
ε,δ,κ′

“�γ” ⇐⇒ ∀n′ ≥ n : (t, n′) |=
A,ι′
ε,δ,κ′

“γ” ,

(t, n) |=
A,ι′
ε,δ,κ′

“γ U γ′” ⇐⇒




∃n′ ≥ n : (t, n′) |=

A,ι′
ε,δ,κ′

“γ′” ∧
∀n ≤ m < n′ : (t,m) |=

A,ι′
ε,δ,κ′

“γ” ,

(t, n) |=
A,ι′
ε,δ,κ′

“γ W γ′” ⇐⇒





(t, n) |=
A,ι′
ε,δ,κ′

“γ U γ′” ∨
(t, n) |=

A,ι′
ε,δ,κ′

“�γ” ,

(t, n) |=
A,ι′
ε,δ,κ′

“∃x : γ” ⇐⇒
{
∃x′ ∈ As : (t, n) |=

A,ι′[s : x 7→x′]

ε,δ,κ′
“γ”

[for s ∈ S and x ∈ DV ′s] ,

(t, n) |=
A,ι′
ε,δ,κ′

“∀x : γ” ⇐⇒
{
∀x′ ∈ As : (t, n) |=

A,ι′[s : x 7→x′]

ε,δ,κ′
“γ”

[for s ∈ S and x ∈ DV ′s] ,

(t, n) |=
A,ι′
ε,δ,κ′

“∃x : γ” ⇐⇒
{
∃x′ ∈ C(ε(i),λp : AJω(p)K) : (t, n) |=

A,ι′
ε,δ,κ′[i : ω 7→κ′

i[ω : x7→x′]]
“γ”

[for i ∈ I and x ∈ (CV ′i)ω] ,

(t, n) |=
A,ι′
ε,δ,κ′

“∀x : γ” ⇐⇒
{
∀x′ ∈ C(ε(i),λp : AJω(p)K) : (t, n) |=

A,ι′
ε,δ,κ′[i : ω 7→κ′

i[ω : x7→x′]]
“γ”

[for i ∈ I and x ∈ (CV ′i)ω] .

Fig. 67. Recursive definition of satisfaction relation for architecture trace assertions.



C. Soundness of Algorithm 1

In the following, we provide an argument of why Alg. 1 preserves the semantics of a FACTum specification.
The following diagram provides an overview of our reasoning:

FACTum
Specification

Isabelle HOL
Theory

Alg. 1

AT

|=
Sect. 3

|=[W
+ 04]

We need to show that a set of architecture traces AT satisfies a FACTum specification iff it satisfies the
Isabelle/HOL theory generated from the specification by algorithm 1.

To this end, we assume the existence of a FACTum specification PS = (DS ,CS ,AS ), consisting of
an algebraic specification of datatypes DS , a specification of component types CT , and an architecture
specification AS .

C.1. Case =⇒

We fix a set of architecture traces AT and assume that it satisfies PS . We show that AT also satisfies the
Isabelle theory generated from PS by algorithm 1. To this end, we fix an architecture trace t ∈ AT and
show that t satisfies the corresponding Isabelle theory. Again, the idea of the argument is depicted by the
following diagram:

CS

DS

AS

CT

MS

AS ′⊗

DS

BAsmp

AAsmp MS

AT
eval

Alg. 1 (22-24)

Alg. 1 (1-3)

Alg. 1 (25-27)

Since AT satisfies PS , the semantics of FACTum (discussed in Sect. 3) requires the existence of an archi-
tecture specification AS ′ which satisfies AS , such that t ∈ AS ′. Thus, t also satisfies the locale assumptions
generated from AS by lines 25− 27 of algorithm 1.

Similarly, since AT satisfies PS , the semantics of FACTum requires the existence of a behavior CT c,
for each component c, which satisfies the corresponding behavior specification CS c. Moreover, the semantics
of FACTum also requires the existence of a behavior trace t′, such that Πc(t)̂ t

′ ∈ CT c. Thus, according
to the definition of eval (discussed in Sect. 4.1.5) we have eval(c, t, t′, γ) for each component c and locale
assumption γ (generated by lines 25− 27 of Alg. 1).

Thus, t′ fulfills all locale assumptions generated by Alg. 1 and thus it satisfies the the Isabelle theory
generated from PS .

C.2. Case ⇐=

We may use a symmetric argument as the one presented in case C.1 for the reverse direction.
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