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Abstract. Smart contracts are programs stored on the blockchain, of-
ten developed in a high-level programming language, the most popular of
which is Solidity. Smart contracts are used to automate financial transac-
tions and thus bugs can lead to large financial losses. With this paper, we
address this problem by describing a verification environment for Solidity
in Isabelle/HOL. The framework consists of a novel formalization of the
Solidity storage model, a shallow embedding of Solidity expressions and
statements, an implementation of Isabelle commands to support a user
in specifying Solidity smart contracts, and a verification condition gen-
erator to support a user in the verification. Compliance of the semantics
is tested by a set of unit tests and the approach is evaluated by means
of three case studies. Our results show that the framework can be used
to verify even complex contracts with reasonable effort. Moreover, they
show that the shallow embedding significantly reduces the verification
effort compared to an alternative approach based on a deep embedding.
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1 Introduction

Blockchain [33] is a novel technology used to store data in a decentralized man-
ner, thereby providing transparency, security, and trust. Although the technol-
ogy was originally invented to enable cryptocurrencies, it quickly found applica-
tions in several other domains, such as finance [23], healthcare [4], land manage-
ment [10], and identity management [46].

One important innovation which comes with blockchains are so-called smart
contracts. These are digital contracts which are automatically executed once
certain conditions are met and are typically used to automate transactions on
the blockchain. For instance, a payment for an item might be released instantly
once the buyer and seller meet all the specified parameters of a deal. Every
day, hundreds of thousands of new contracts are deployed managing millions of
dollars’ worth of transactions [45].

Technically, a smart contract is code which is deployed to a blockchain, and
which can be executed by sending special transactions to it. Smart contracts
are usually developed in a high-level programming language, the most popular

https://zenodo.org/records/12770521
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of which is Solidity. Solidity can be compiled to run on the Ethereum Virtual
Machine (EVM), and thus, it works on all EVM-based smart contract platforms,
such as Ethereum, Avalanche, Moonbeam, Polygon, BSC, and more. Currently,
more than 90% of all smart contracts are developed using Solidity [27].

As with every computer program, smart contracts may contain bugs which
can be exploited. However, since smart contracts are often used to automate
financial transactions, such exploits may result in huge economic losses. For
example, in 2016, a vulnerability in an Ethereum smart contract was exploited,
resulting in a loss of approximately $60M [5]. More recently, hackers exploited a
vulnerability in the DeFi-platform Poly Network to steal $600M [34]. Overall, it is
estimated that since 2019, more than $5B have been stolen due to vulnerabilities
in smart contracts [11].

The high impact of vulnerabilities in smart contracts, together with the fact
that once deployed to the blockchain, they cannot be updated or removed easily,
makes it important to “get them right” before they are deployed. To address
this problem, we developed Isabelle/Solidity, a shallow embedding of Solidity in
Isabelle/HOL. To this end, the major contributions of this paper are as follows:
1. We provide a novel formalization of Solidity’s storage model in Isabelle/HOL

(sec. 3.1). The formalization provides definitions for all different stores used
in Solidity as well as functions to manipulate data structures stored on them.

2. We provide a shallow embedding of Solidity expressions and statements in
Isabelle/HOL. The embedding consists of a formalization of a state monad
(sec. 3.2) as well as definitions of a subset of expressions (sec. 3.3) and
statements (sec. 3.4) in terms of the state monad.

3. We implemented two new commands for Isabelle to support the specification
and verification of Solidity smart contracts (sec. 3.5). The commands are
implemented in Isabelle/ML and generate definitions, theorems, and proofs
for a contract specification given by a user.

4. We provide a formalization of a weakest precondition calculus and corre-
sponding verification condition generator for our embedding (sec. 3.6). It
can be used to reduce lemmas involving Solidity statements to HOL formu-
las which can then be discharged using standard Isabelle infrastructure.

5. We provide a test suite to validate Solidity semantics (sec. 4.1). The test suite
includes set of test cases to test the semantics of expressions and statements.

6. We formalize and verify three smart contracts in Isabelle/Solidity (sec. 4.2).
Each contract is specified using our framework, and then we verify a key
invariant for each contract.
Our results suggest that the shallow embedding can significantly reduce the

effort to verify concrete smart contracts. In particular, verifying the invariant
of one of the case studies required 3 250 lines of Isabelle/Isar code in a deep
embedding. In our shallow embedding, the same invariant was verified in less
than 100 lines (a reduction of 97%).

The formalization, implementation, and the case studies are available online1.
We shall use term to reference a certain term in the corresponding Isabelle
1 https://github.com/dmarmsoler/isabelle-solidity-shallow

https://github.com/dmarmsoler/isabelle-solidity-shallow/tree/10f8f964767edb12c7d3ac784e4e5074afdd7b85


Secure Smart Contracts with Isabelle/Solidity 3

source file. This will then be a clickable link which opens a theory file and high-
lights the corresponding formalization (for example skip_monad). The paper’s
artefact contains a virtual machine with an Isabelle installation and a copy of the
same source files. It is also available online at https://zenodo.org/records/12770521.

2 Solidity

To provide a first impression of the language, lst. 1 shows a simple smart con-
tract in Solidity which allows clients to deposit and withdraw funds. To this
end, the contract keeps an internal record of funds transferred by its customers.
This record is increased whenever a customer transfers additional funds via the
deposit method. Once the customer calls the withdraw method, all its recorded
funds are returned and its internal record reset to 0.

Listing 1: A simple banking contract in Solidity
1 contract Bank {
2 mapping(address => uint256) balances;
3 function deposit() public payable {
4 balances[msg.sender] = balances[msg.sender] + msg.value;
5 }
6 function withdraw() public {
7 uint256 bal = balances[msg.sender];
8 balances[msg.sender] = 0;
9 msg.sender.transfer(bal);

10 }
11 }

Although simple, the example already demonstrates several specialties of the
Solidity programming language. In particular, every contract has access to an
internal balance (not to confuse with mapping balances in line 2 which is simply
a member variable of the contract). Funds can be transferred to and from this
internal balance either explicitly (using function transfer) or implicitly (via
an external method call). The address of the client (the one calling a contract’s
method) and the amount of funds transferred with a call can be accessed using
keywords msg.sender and msg.value, respectively.

3 Isabelle/Solidity

Our semantics is based on the official documentation2 of Solidity v0.8.25. It is
formalized in higher-order logic (HOL) using inductive data types [7]. To this
end, we use bold font for types and roman font for type constructors.

3.1 Storage Model

Solidity programs can make use of different types of stores for data: storage
(for persistent data), memory (for volatile data), calldata (for volatile and read-
2 https://docs.soliditylang.org/en/v0.8.25/

https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Solidity.thy#L286-L287
https://zenodo.org/records/12770521
https://docs.soliditylang.org/en/v0.8.25/
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only data), and stack. Our storage model is formalized in theory State.thy and
consists of a formalization of all of these different types of stores.

Value Types. The basic data types stored in Solidity are called value types
and defined as follows:

valtype ::= Bool(bool) | Sint(256 word)
| Address(address) | Bytes(bytes) ( valtype)

where bool is the type of boolean values, 256 word the type of finite bit strings3

of length 256, address the type of addresses, and bytes the type of bytes.

Storage. The persistent store can keep basic value types as well as complex
types, such as arrays and hash-maps.

sdata ::= Value(valtype) | Array(sdata list) | Map(valtype⇒ sdata)
( sdata)

where a list represents the type of lists over another type a.

Memory. The volatile store supports two types of data: basic value types and
arrays.

mdata ::= Value(valtype) | Array(location list) ( mdata)

where location represents memory locations which is just a synonym for the
type of natural numbers.

Note that, unlike storage, memory arrays are organized as pointer structures.

Example 3.1 (Memory array). A simple array of 3 integers 5, 6, and 7, is rep-
resented as follows:

[Array([1, 2, 3]), Value(Sint(5)), Value(Sint(6)), Value(Sint(7))]

Calldata. The read-only store can keep two types of data: basic value types
and arrays.

cdata ::= Value(valtype) | Array(cdata list) ( cdata)

Stack. In Solidity, the stack can keep four different types of data: basic value
types and pointers to storage, memory, or calldata, respectively.

kdata ::= Value(valtype) | Storage(identifier, valtype list)
| Memory(location) | Calldata(identifier, valtype list) ( kdata)

Note that memory pointers are given in terms of memory locations while pointers
to storage and calldata are given in terms of an identifier and a list of valtypes
which represent the sequence of indices to reach the referenced element.
3 Bit strings are modelled using Isabelle’s word library [14]

https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State.thy
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State.thy#L12-L16
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State.thy#L107-L110
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State.thy#L168-L170
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State.thy#L241-L243
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State.thy#L409-L413
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State. A state of a Solidity program consists of configurations of each of its
stores. To define such a state, we first introduce the following type abbreviations:

memory ::= mdata list ( memory)
stack ::= identifier ⇀ kdata ( stack)

storage ::= address⇒ identifier⇒ sdata ( storage)
calldata ::= identifier⇒ cdata ( calldata)
balances ::= address⇒ nat ( balances)

where A ⇀ B is the set of finite maps from A to B. Note that the formalization
of storage assigns a private store to each contract (identified by its address which
is known during execution).

A state is now defined as a record over the above types:

state ::= memory×calldata×storage×stack×balances ( state)

For a given state s, we denote with Memory(s), Calldata(s), Storage(s), Stack(s),
Balances(s) its memory, calldata, storage, stack, and balances, respectively.

Auxiliary definitions. Our model provides definitions for different functions to
lookup and update data for each type of store. In addition, we provide definitions
for functions to copy data from memory to storage ( copy_memory_storage),
memory to calldata ( copy_memory_calldata), storage to memory
( copy_storage_memory), calldata to memory ( copy_calldata_memory),
and calldata to storage ( copy_calldata_storage). These functions need to
convert between the different representations of the data for each type of store.

3.2 State Monads
Statements and expressions are formalized using a state monad [12,42] with ex-
ception and non-termination. State monads are formalized in State_Monad.thy.
To this end, we first define a result type as follows:

result(n, e) ::= Normal(n) | Exception(e) | NT ( result)

The type result is defined over two type parameters, n and e, to denote the type
of normal and exceptional return values, respectively. Normal(x) represents the
result x of a normal execution, Exception(e) represents an exceptional return
with exception e, and NT represents a non-terminating execution.

We can then define our state monad as follows:

state_monad(a, e, s) def= s⇒ result(a × s, e× s) ( state_monad)

The definition requires three type parameters: a type a for return values, a type
s for states, and a type e for exceptions. The monad models an execution which
starts in a certain state and either terminates in a new state with corresponding
return value/exception, or does not terminate. We also define corresponding
functions to create and execute monads, respectively ( create, execute).

https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State.thy#L193
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State.thy#L421
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State.thy#L423
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State.thy#L424
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State.thy#L422
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State.thy#L426-L431
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State.thy#L335
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State.thy#L357
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State.thy#L367
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State.thy#L388-L397
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State.thy#L399-L401
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State_Monad.thy
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State_Monad.thy#L7-L10
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State_Monad.thy#L28-L30
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State_Monad.thy#L29
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State_Monad.thy#L29
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Monad operations. To support the construction of monads, we defined several
basic operations on monads. For example, the following constants denote normal
and erroneous returns, respectively:

return(a) def= λs. Normal(a, s) ( return)

throw(e) def= λs. Exception(e, s) ( throw)

The bind operator f >>= g combines a monad f : state_monad(a, e, s) with
a function g : a⇒ state_monad(b, e, s):

f >>= g (s) def=


g(a)(s′) if f(s) = Normal(a, s′)
Exception(e, s) if f(s) = Exception(e, s)
NT if f(s) = NT

( bind)

To combine multiple monads we will often use the familiar do-notation. Then,

do
[

a← return(1)
return(a)

denotes the monad given by return(1) >>=(λa. return(a)).

Partial functions. To model loops and recursive functions, we use Isabelle’s
partial function package [25]. This package resorts to domain theory to express
general recursions over complete partial orders [44]. The package includes a setup
for the option monad but can be extended to work with custom monads as well.

We implemented a new mode sm for the partial function package to work with
our state monad. To this end, we provided a definition for a bottom element
( empty_result), a corresponding ordering ( result_ord), and a least
upper bound ( result_lub) for our state monad. Then, we needed to prove
the following statement about admissible properties.

Lemma 3.1 ( admissible_sm): For each proposition P , the following propo-
sition is admissible w.r.t. result_ord and result_lub:

λf. ∀x, s, r. effect(f(x), s, r) =⇒ P (x, h, r)

where effect(m, s, r) defines that a state monad m, executed in state s either
executes normally with result r or throws an exception r.

To support the partial function package in proving the existence of a
unique least fixed-point, we also needed to prove monotonicity for some of
our monads ( throw_monad_mono, return_monad_mono, bind_mono,

option_monad_mono).

3.3 Expressions

Solidity expressions and statements are formalized in terms of our state monad
in Solidity.thy. To this end, we first define the result type of an expression as

https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State_Monad.thy#L51-L52
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State_Monad.thy#L63-L64
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State_Monad.thy#L70-L74
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State_Monad.thy#L303
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State_Monad.thy#L304
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State_Monad.thy#L305
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State_Monad.thy#L378-L389
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State_Monad.thy#L470-L471
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State_Monad.thy#L473-L474
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State_Monad.thy#L431-L468
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/State_Monad.thy#L476-L477
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Solidity.thy
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follows:

rvalue ::= Storage(identifier, valtype list) | Memory(location)
| Calldata(identifier, valtype list) | Value(valtype) | Empty ( rvalue)

Thus, an expression can return a basic value type or a pointer to storage, mem-
ory, or calldata. In addition, an expression may also return nothing which is
modelled by the constructor Empty. Now, we can define the expression monad
as an instance of our state monad:

expression_monad ::= state_monad(rvalue, ex, state)

where ex is a datatype for capturing the different types of errors.
Our formalization contains definitions for all the basic expressions in terms

of the expression monad: basic constants ( bool_monad, sint_monad,
address_monad), arithmetic operators ( plus_monad, minus_monad,
mult_monad, mod_monad) as well as corresponding safe versions to check

for overflows, comparison operators ( equals_monad, less_monad), and
boolean operators ( not_monad, and_monad, or_monad).

In addition, we also provide definitions for Solidity specific operators, such
as an operator to compute hash values ( keccak256_monad), an operator to
retrieve the address of the currently executing contract ( this_monad), an
operator to obtain the value which was sent by the sender ( value_monad),
and an operator to obtain the address of the message sender ( sender_monad).

Finally, we provide monads to obtain the value of a storage or stack vari-
able ( storeLookup, stackLookup) and monads to compute the length
of memory/storage arrays ( arrayLength, storeArrayLength). Note that
all the lookup functions take an optional list of expression monads to navigate
complex data types such as arrays and hash-maps. In particular, the operators
for stack variables need to check the location of the datatype (memory, storage,
or calldata) and then navigate the structure in the corresponding store.

Example 3.2 (Stack lookup). Assuming st is a state with memory as defined in
ex. 3.1 and Stack(st)(“x”) = Memory(0). Then

stackLookup(“x”, [sint_monad(0)])(s) = Normal(Value(Sint(5)), s)

3.4 Statements

Again, we formalize all basic statements. Assignments, for example, are formal-
ized by two monads to assign to stack ( assign_stack_monad) or storage
variables ( assign_storage_monad). In Solidity, the behavior of assigning
complex data types, such as arrays, depends on the location of the array. tab. 1
summarizes the different cases which need to be considered. A complex data type
can be located in any of the three types of stores: memory (M), storage (S), and
calldata (C). In addition, we can have pointers to storage elements on the stack
(P). Depending on whether we copy the complete array or just modify a pointer,

https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Solidity.thy#L5-L10
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Solidity.thy#L126-L127
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Solidity.thy#L135-L136
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Solidity.thy#L138-L139
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Solidity.thy#L236-L237
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Solidity.thy#L242-L243
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Solidity.thy#L248-L249
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Solidity.thy#L251-L252
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Solidity.thy#L196-L197
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Solidity.thy#L227-L228
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Solidity.thy#L154-L155
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Solidity.thy#L230-L231
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Solidity.thy#L233-L234
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Solidity.thy#L93-L98
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Solidity.thy#L141-L142
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Solidity.thy#L689-L690
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Solidity.thy#L686-L687
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Solidity.thy#L265-L271
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Solidity.thy#L372-L390
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Solidity.thy#L392-L410
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Solidity.thy#L273-L282
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Solidity.thy#L455-L462
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Solidity.thy#L482-L488
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we distinguish between deep copy (D) and shallow copies (S). For example, the
first entry in tab. 1 states that assigning a memory array to a memory array
actually just assigns a pointer instead of copying the whole array.

Table 1. Assignments
for complex data types

LHS RHS Type

M M S
M C D
M P D
M S D
S M D
S C D
S S D
S P D
P S S
P M N/A
P C N/A
P P N/A
C _ N/A

Solidity also supports dynamic storage arrays which
can be expanded at runtime. To this end, we provide
also a monad to allocate new storage for an additional
array element ( allocate).

Conditionals and loops are formalized by two mon-
ads ( cond_monad and while_monad). As men-
tioned in sec. 3.2, loops are formalized using a partial
recursive function. To this end, we first needed to verify
some additional monotonicity results ( cond_mono,

cond_K) used by the partial function package to
verify the existence of a corresponding fixed-point. The
package then provides us with a fixed-point induction
theorem which can be used to reason about loops.

Finally, we provide a formalization of the transfer
statement which can be used to transfer funds to other
accounts ( transfer_monad). Note that in Solidity, a
transfer implicitly triggers the execution of a so-called
fallback method and thus we postulate the existence of
such a method for each contract address. In addition, we assume that such meth-
ods preserve invariants over the currently executing contract’s storage and bal-
ance, given that we are able to show that a callback preserves invariants as well:

∀s, r. P (s) ∧ effect(call, s, r) =⇒ inv(r, P, E) P (s)
∀a, r. effect(fallback(a), s, r) =⇒ inv(r, P ′(s), E′(s))

( fallback_invariant)

where inv(r, P, E) requires that predicate P holds for a successful termination r
and E for an exceptional one. Moreover,

P ′(s) = λs′. Stack(s) = Stack(s′) ∧Memory(s) = Memory(s′)
∧Calldata(s) = Calldata(s′) ∧ P (s′)

and E′ is defined similarly as E.

3.5 Automation: Specification

To support a user in the specification and verification of a contract, we im-
plemented a new definitional package for Isabelle using Isabelle/ML [43]. Our
package is implemented in file Contract.thy.

Specification. To support a user with the specification of a contract, our pack-
age implements a new Isabelle command contract. This command requires
a user to provide a name for the contract, followed by a list of declarations
of storage variables. Then, the user can specify a constructor using keyword

https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Solidity.thy#L352-L358
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Solidity.thy#L291-L296
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Solidity.thy#L620-L621
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Solidity.thy#L603-L616
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Solidity.thy#L571-L577
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Solidity.thy#L663-L676
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Solidity.thy#L653-L660
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Contract.thy
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constructor, followed by an implementation of the constructor in terms of an
expression monad. Finally, the user can specify a list of methods using the key-
word cmethod. Each method can have an optional list of formal parameters
followed by an implementation in terms of an expression monad.

Example 3.3 (Banking contract). The formalization of our example contract
from lst. 1 in Isabelle/Solidity looks as follows:

Our package then generates definitions for the constructor and the contract’s
methods. To this end, we first initialize the contract’s balance, storage variables,
and stack. Then, we can just execute the monad provided by the user.

Example 3.4 (Constructor). Our package would generate the following defini-
tion for the constructor from the specification given in ex. 3.3:

bank_constructor_def =
do


init_balance
initStorage(“balances”, Map(mapping(Value(Sint))))
emptyStack
skip_monad

The definition of the methods is a bit more elaborate since we want to al-
low for mutual recursive definitions. Again, we first initialize the balance and
the stack, before we execute the monadic definition provided by the user. Note,
however, that a method has a special parameter call which can be used in its defi-
nition. This is a construct which can be used to call internal or external methods.
Note also that for each method we need to generate and prove a monotonicity
lemma for the partial function package.

Example 3.5 (Methods). Our package would generate the following definition
for the deposit method from the specification given in ex. 3.3:

deposit(call) =
do


init_balance
emptyStack
assign_storage_monad(“balances”, [sender_monad],
plus_safe(storeLookup(“balances”, [sender_monad], sender_monad)))
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Our package would also generate a proof for the following lemma:

sm.mono_body(deposit) (deposit_def_mono)

where sm.mono_body(x) requires definition x to be monotonic w.r.t. the state
monad ordering described in sec. 3.2.

Finally, we generate a wrapper datatype for all methods of a contract and a
corresponding definition for a function call over this data type. Since we allow
for the specification of recursive methods, the definition of call uses the partial
function package. The partial function package then provides us with a proof
method to verify properties over (mutually recursive) functions using fixed-point
induction (call.raw_induct).

Example 3.6 (Wrapper). Our package would generate the following wrapper
for the specification given in ex. 3.3.

bank ::= Deposit_m | Withdraw_m (bank)

Moreover, the definition of call looks as follows:

bank_call(m) =
{

deposit(bank_call) for m = Deposit_m
withdraw(bank_call) for m = Withdraw_m

Verification. To support a user with the verification of contract invariants,
our package implements a new Isabelle command invariant. This command
requires a user to provide the name of the contract, followed by a name for
the invariant and two predicates formulated over the contracts private state and
internal balance (one for normal executions and the other one for exceptional
ones). The command then provides the user with a series of proof obligations
which they need to discharge to verify the invariant.

Example 3.7 (Invariant). Assume that we want to verify that the sum of all
registered deposits of our banking contract is always less or equal to the con-
tract’s internal balance:

sum_bal(s, b) = b ≥
∑
ad

(s(“balances”)(ad)) (1)

The corresponding specification in Isabelle/Solidity would then look as follows:
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In the output window we can also see the proof obligations for the constructor
and the deposit method which are then discharged by dedicated lemmas.

The invariant command requires the user to verify that the constructor es-
tablishes the invariant and that the methods preserve it. After discharging the
proof obligations, our package then derives a general theorem which shows that
the contract indeed preserves the invariant for all possible environments.

Example 3.8 (Proof obligations). The proof obligation for the deposit method
generated from the specification provided in ex. 3.7 looks as follows:

effect(deposit(call), s, s′, r) ∧ inv(sum_bal, s) =⇒ inv(sum_bal, s′)

Once the user discharges the proof obligations, our package then generates a
proof for the following theorem:

Theorem 1 (bank.sum_bal).
effect(call(x′), s, s′, r, e) ∧ inv(sum_bal, s) =⇒ inv(sum_bal, s′)

The proof of the final theorem generated by our package uses the fixed-point
induction theorem provided by the partial function package (call.raw_induct)
and uses the lemmas provided by the user to discharge the different proof obli-
gations required by the induction theorem.

3.6 Automation: Verification

To support a user in discharging the proof obligations generated by our pack-
age, we implemented a weakest precondition calculus [15] and corresponding
verification condition generator for our monads in theory WP.thy.

The definition of the weakest precondition for our state monad is as follows:

wp(f, P, E, s) =


P (r, s′) if execute(f, s) = Normal(r, s′)
E(e, s′) if execute(f, s) = Exception(e, s′)
True if execute(f, s) = NT

( wp)

Note that we are only interested in partial correctness here (since smart contracts
are always guaranteed to terminate). Thus, the weakest precondition of a non-
terminating program is just True. We then prove corresponding lemmas for all
our monads (in total ca. 100 lemmas).

We use Isabelle/Eisbach [32] to define the verification condition generator. Its
purpose is to reduce the proof obligations to propositions in plain Isabelle/HOL
which can then be proven using the proof methods available for Isabelle/HOL.

Example 3.9 (Verifying deposit). The proof for the deposit method (discussed
in ex. 3.8) using our VCG is shown below:

https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/WP.thy
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/WP.thy#L167-L172
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We first unfold some definitions, and then we just combine the VCG with the
standard method auto which is able to finish the proof.

4 Evaluation

4.1 Compliance and Unit Testing

An important problem in any formalization of a real-world (programming) lan-
guage is to ensure that the formal semantics is a faithful representation of the
real-world implementation, in our case, Solidity on the Etherum Blockchain.
Furthermore, when developing the formal semantics further, for instance, adding
new features, it is important to ensure that no unwanted changes are introduced.

We address this issue by translating, currently manually, the test cases from
the reference test suite of Solidity [16] to our formalization (the test cases are
implemented in file Unit_Tests.thy). Our semantics is executable for a finite
address space. Thus, if we instantiate the generic address type (recall sec. 3.1)
with a finite address space (e.g., 1, . . . , 100), we can use Isabelle’s code gener-
ator [18] to efficiently evaluate (ground) test cases. This allows us to explore
the semantics using Isabelle’s value statement as well as turn the test cases
from [16] into formal lemmas.

Example 4.1 (Unit test). The following shows a simple unit test for the as-
sign_stack monad.

All such “test case”-lemmas are proven by the normalization method, po-
tentially followed by simplification. The normalization method uses a combina-
tion of simplification and code generation for a small, trusted subset of HOL [18].
We formalized over 50 test cases; their checking takes less than 30 seconds.

4.2 Case Studies

To evaluate the potential of the approach for verifying Solidity smart contracts
we used it in three case studies.

https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Unit_Tests.thy
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Banking. For the first case study, we chose the banking contract shown in lst. 1
since it is also verified in the deep embedding [28,30,31] and thus allows us to
compare the two approaches. We specified the contract in our framework and
then verified the invariant discussed in ex. 3.7 ( sum_bal).

The formalization is available in theory Token.thy and the effort of specify-
ing and verifying the contract in Isabelle/Solidity is summarized in fig. 1. The
complete specification of the banking contract is just 11 lines of Isar code and
consists of a specification of the constructor as well as the deposit and withdraw
methods. It includes several basic features of Solidity, such as mappings and
transfer statements. The verification of the invariant required to verify 70 lines
of Isar code. One particular challenge in the verification was the fact that the
invariant is a property formulated over the complete address space, which is a
finite but arbitrarily large set.

Compared to previous verification attempts we can see a large reduction in
effort. For example, the original verification of the very same invariant for the
same contract was 3 000 lines of Isar [28,30]. Even using a weakest precondition
calculus still required 700 lines of proof code [31].

Bank Casino Voting
0

50

100

150

200

11

66
76

Bank Casino Voting
0

50

100

150

200

70

43

203

Fig. 1. Specification (black) and verifi-
cation (grey) effort in terms of lines of
proof code.

Casino. For the second case study we
chose the casino contract used in the pre-
vious “VerifyThis long-term verification
challenge”. The contract is available on-
line4. The contract allows an operator to
create a new game by placing a hidden
secret in the form of a hash of a secret
number inside the contract (using method
createGame). A player can then place
a bet (HEAD or TAIL) by transferring
funds to the contract via the placeBet
method. The operator can then invoke
decideBet to start the game. To this end,
the operator reveals the secret number
to decide if HEAD (even) or TAIL (odd)
wins. In the case the player wins, they get
twice their bet back and the pot is de-
duced accordingly. In the case the player
loses, their original bet is added to the
pot. The operator can always increase the
pot or deduce some amount (if no game is
active).

One important property, from the player’s perspective, is to ensure that the
casino has always enough funds to cover the pot. Thus, for our case study, we

4 https://verifythis.github.io/02casino/

https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Token.thy#L95-L98
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Token.thy
https://verifythis.github.io/02casino/
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verified the following invariant:

pot_balance(s, b) = b ≥ s(“pot”) ( pot_balance)

The formalization of the casino contract is available in Casino.thy and the
specification and verification effort is summarized in fig. 1. Its specification in
Isabelle/Solidity required 66 lines of code in total and consists of 7 member
variables and 6 methods. It contains some advanced features of Solidity, such as
enums, modifiers and hash functions.

The verification of the invariant was just 43 lines of code. The invariant
is trivial for method createGame, since it does not modify the balance of the
contract or the pot. However, all other methods modify either the balance or
the value of the pot (or both), and thus require to show that the invariant is
preserved.

Voting. For the third case study we chose a voting contract from the official So-
lidity documentation which states that “The following contract is quite complex,
but showcases a lot of Solidity’s features.”

The contract is available online5. The idea is to create one contract per ballot,
providing a short name for each option. Then the creator of the contract who
serves as chairperson will give the right to vote to each address individually by
calling the giveRightToVote method. The persons behind the addresses can
then choose to either vote themselves or to delegate their vote to a person they
trust. To vote themselves, they can invoke method vote by providing the number
of the proposal. To delegate their vote, they can invoke method delegate and
provide the address of the person they want to delegate to. At the end of the
voting time, method winningProposal can be called to compute the proposal
with the largest number of votes and declare it the winning proposal.

We then verified an invariant which guarantees that the number of votes is
always bound by the number of eligible voters:

sum_votes(s, b) =
∑

i≤#s(“proposals”)

(s(“proposals”)[i].“voteCount”) ≤

∑
ad∈{ad|s(“voters”)(ad).“voted”}

(s(“voters”)(ad).“weight”) ( sum_votes)

The formalization is available in Voting.thy and the specification and verifi-
cation effort is summarized in fig. 1. Specification of the voting contract required
76 lines of Isabelle/Isar in total split across 5 methods. It showcases many ad-
vanced features of Solidity, such as hash maps, dynamic storage arrays, memory
arrays, storage pointers and loops. Verifying the invariant required 200 lines of
proof code. One particular challenge in the verification of this invariant was
that the invariant was formulated over complex data structures which required
advanced reasoning capabilities.
5 https://docs.soliditylang.org/en/v0.8.25/solidity-by-example.html#voting

https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Casino.thy#L178-L187
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Casino.thy
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Voting.thy#L55-L60
https://github.com/dmarmsoler/isabelle-solidity-shallow/blob/10f8f964767edb12c7d3ac784e4e5074afdd7b85/Voting.thy
https://docs.soliditylang.org/en/v0.8.25/solidity-by-example.html#voting
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5 Related Work

The work presented in this paper is about the verification of Solidity smart
contracts using Isabelle. Thus, related work can be found in two different areas:
First, work related to the verification of Solidity and work related to general
program verification using Isabelle. We discuss other works formalizing Solidity
in Isabelle at the end of this section.

As outlined by Almakhour et al. [3] and Tolmach et al. [40], there is a growing
amount of research about verification of smart contracts. Early work in this area
was done by Bhargavan et al. [8] which describe an approach to map a Solidity
contract to F* where it can then be verified. TinySol [6] and Featherweight
Solidity[13], on the other hand, are two calculi formalizing some core features of
Solidity. Ahrendt and Bubel describe SolidiKeY [2], a formalization of a subset of
Solidity in the KeY tool [1] to verify data integrity for smart contracts. Hajdu and
Jovanovic [19,20], provide a formalization of Solidity in terms of a simple SMT-
based intermediate language and Tai et al. [35] provide an encoding of Solidity
for Z3. Finally, and Jiao et al. [21,22], provide a formalization of Solidity in K.
All of these works use an axiomatic approach for defining the formal semantics of
Solidity. In contrast, we use a conservative embedding into Isabelle/HOL, which
ensures the consistency of our semantics “by construction”.

Formalizing programming languages or specification languages in Isabelle is
by no means a new technique. Over time, several languages and tools have been
developed along this line, such as Isabelle/SIMPL [39], IMP [36,26] and the
seL4 verification project [24]. Also, using a monadic representation of stateful
computations is common. For example, the AutoCorres [17,9] (used in the seL4
verification project [24]) provides an abstraction of C code using monads, and
also Clean [41], does use monads for modelling stateful computations. While work
in this area provides support for many general features of program verification,
they do not support specific features for Solidity.

To the best of our knowledge there are only two other formalizations of Solid-
ity in Isabelle. Closely related is our own work on a deep embedding of Solidity
in Isabelle [28]. In our deep embedding, Solidity statements are formalized as a
dedicated datatype which allows to verify properties about the language itself.
In general, it is also possible to use the deep embedding for the verification of
concrete contracts. However, this requires quite some effort even for rather small
contracts. This paper, on the other hand, provides a shallow embedding of Solid-
ity in which statements are directly mapped to corresponding HOL definitions.
This allows for better automation and can significantly reduce the effort to verify
concrete contracts as shown in our first case study (recall sec. 4.2). Thus, both
approaches complement each other, and it depends on the concrete verification
task which approach is better.

Ribeiro et al. [37]. adapt the Simpl language [38] to formalize a subset of So-
lidity in Isabelle/HOL. Compared to our work, SOLI is quite low-level and rather
an intermediate language than a direct formalization of Solidity. Indeed, while
it supports several features which are not provided by Solidity (Upd, Dyncom),
it does not provide explicit support for Solidity-specific language features, such
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as different types of stores, a notion of Gas, fallback methods, external vs. inter-
nal functions, etc. Another difference to our work is that their semantics seems
to be not executable and therefore difficult to evaluate. On the other hand, we
considered it important to have an executable semantics that can be evaluated
against the reference implementation.

6 Conclusion

With this paper, we present a verification environment for Solidity smart con-
tracts based on Isabelle/HOL. The approach comes with a novel formalization
of the Solidity storage model and a corresponding shallow embedding of Solid-
ity expressions and statements. In addition, we implemented two new Isabelle
commands to support the specification and verification of Solidity contracts in
Isabelle. Finally, we formalized a weakest precondition calculus and implemented
a corresponding verification condition generator to support a user in the verifi-
cation. To validate our semantics, we implemented a test suite consisting of over
50 unit tests. Finally, we evaluated the approach by means of three case studies.

Our results show that the approach can be used to verify even complex con-
tracts with reasonable effort. In addition, it significantly reduces the verification
effort compared to a corresponding deep embedding. However, the case studies
also revealed some limitations of the approach which lead to future work.

One limitation regards compliance of our semantics with the official Solidity
documentation. Even though the unit tests provide some evidence that our se-
mantics indeed matches the specification, we cannot guarantee full compliance.
While it will never be possible to guarantee complete compliance, future work
should provide further evidence in that regard. A promising approach would be
to use semantic fuzzing as for example described in [29].

Another limitation concerns proof automation. Although the weakest pre-
condition calculus and corresponding verification condition generator automate
large parts of the proofs, there is still area for improvement. For example, some
of our rules are rather general and split a goal into several subgoals where only
some are indeed sensible for a given context. Thus, future work should focus on
improving such rules by inspecting the context and apply more specialized rules
for the given situation.
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