
Type Safety for Isabelle/Solidity

Billy Thornton1[0000−0001−7242−5890] and Diego Marmsoler1[0000−0003−2859−7673]

University of Exeter, Department of Computer Science, The Innovation Centre, Exeter,
EX4 4RN, United Kingdom

Abstract Smart contracts are programs stored on the blockchain that are
often developed in a high-level programming language, the most popular
of which is Solidity. Smart contracts are used to automate financial
transactions; thus, bugs can lead to large financial losses. In previous
works, we developed a formalization of Solidity in Isabelle/HOL, which
can be used to verify the properties of Solidity smart contracts. This
formalization features untyped stores, where the types are inferred using
a type environment. It is currently unclear whether our semantics can
cause type inconsistencies between stores and their environments. With
this work we address this problem by formalizing the notion of type
safety for untyped stores and verifying that our semantics preserve this
property. The formalization and proofs were verified using Isabelle/HOL.
Our results guarantee that our semantics are type safe and the proofs can
be used to simplify the verification process for the properties of Solidity
smart contracts.

Keywords: Type Safety · Smart Contracts · Solidity · Program Verifica-
tion · Isabelle/Solidity.

1 Introduction

Blockchain [23] is a novel technology for providing decentralised and openly
accessible ledgers without the need of a trusted third party. Originally designed
to support cryptocurrencies, blockchain have been used in a wide range of
applications, such as finance [17], healthcare [5], land management [10], business
process management [22], and even identity management [30].

Blockchain ecosystems have been rapidly evolving, with smart contracts being
one of the primary innovations. Smart contracts are digital contracts used to
automate transactions on the blockchain once pre-defined conditions are met.
For instance, a payment for an item might be released instantly once the buyer
and seller have met all specified parameters for a deal. Every day, hundreds of
thousands of new contracts are deployed managing millions of dollars’ worth of
transactions [29].

Smart contracts consist of non-modifiable code which is deployed to the
blockchain and which can be executed by sending a special transaction to it.
Smart contracts are usually developed in a high-level programming language, the
most popular of which is Solidity [14]. Currently, 90% of all smart contracts are

2 B. Thornton and D. Marmsoler

developed using Solidity [18] and, according to a 2023 survey, Solidity is by far
the most popular language used by blockchain developers [4].

As with every computer program, smart contracts may contain bugs which
can be exploited. However, since smart contracts are often used to automate
financial transactions, such exploits may result in huge economic losses. In general,
it is estimated that since 2019, more than $5B was stolen due to vulnerabilities
in smart contracts [11].

The high impact of vulnerabilities in smart contracts, together with the fact
that once deployed to the blockchain, they cannot be updated or removed easily,
makes it important to “get them right” before they are deployed. Consequently,
there has been a growing amount of work to verify smart contracts (see [3] for
an overview). There is, however, a lack of work which focuses on the analysis of
Solidity and in particular its type safety.

Thus, with the following work we formalize and verify type safety for Isa-
belle/Solidity [19,20,21], a formalization of Solidity in Isabelle [24]. To this end,
we provide the following contributions:

– We provide a formal definition of type safety in the context of Isabelle/Solid-
ity (section 3). The definition highlights different aspects of type safety in
our context, such as type consistency, structural consistency, and contract
properties.

– We verify that the semantics of Isabelle/Solidity preserves type safety (sec-
tion 4). In particular the verification of pointer structures available in Solidity
was challenging and is discussed in more detail.

All of our work is mechanized in Isabelle and the formalization and verification
of type safety consists of around 7 000 lines of Isabelle/Isar code.

In the following, we first provide a brief introduction into Isabelle/Solidity
in section 2. Then, in section 3 we discuss our definition of type safety and in
section 4 its verification. We then discuss related work in section 5 and conclude
the paper with a discussion of results in section 6.

2 Isabelle/Solidity

Our formalisation of the type safety of Solidity is based on the denotational
semantics of Solidity described in [19,20,21] which we summarize in this section.
Isabelle/Solidity is developed using higher-order logic with inductive data types [7].
To this end, we use bold font for types and italics for type constructors. We
shall also use

type⊥
def
= ⊥ ∪ {x⊥ | x ∈ type}

to denote the type which adds a distinct element ⊥ to the elements of type.
Sometimes we shall use

type⇀ type def
= type → type⊥

to denote the type of partial functions. For such a function f we shall use dom(f)
to denote its domain.

Type Safety for Isabelle/Solidity 3

2.1 Value Types

Our version of Solidity supports four basic data types, called value types:

Types ::= TBool | TAddr | TSInt(Nat) | TUInt(Nat)

TBool denotes boolean values and TAddr denotes addresses. We also support
signed and unsigned integers from 8 to 256 bits in steps of 8. Thus, TSInt(b) and
TUInt(b) denote signed and unsigned integers of bit size b. In Solidity, raw data is
encoded and stored in hexadecimal format, however, to simplify the computation
of locations for reference types, we use the string representation of values for
raw data in our model. Thus, type Valuetype is actually just a synonym for
type String, and it is used to represent the data of value types in the store. In
addition, we write ⌊v⌋ and ⌈v⌉ to convert the value v of a basic data type to and
from a string representation, respectively.

2.2 Stores and Reference Types

We use strings to model the addresses of storage cells to simplify the computation
of locations for reference types. Thus, type Loc denotes these types of strings
and is used to represent storage locations. We can then model a general store for
values of type v as a parametric data type:

Store(v)
def
= (Loc⇀v)×Nat

A store consists of a (finite) mapping to assign values of type v to locations,
and in addition, it holds a pointer to the next free location. In the following we
denote the mapping of a store s with mapping(s) and we use toploc(s) to denote
its top location. We shall also use functions

accessStore(l, s)
def
= mapping(s)(l)

updateStore(l , val , s)
def
= s[mapping 7→ mapping(s)[l 7→ val]]

to access and update a location l of a store s.

Computing storage locations Solidity computes storage locations for ref-
erence types by combining the address of the reference type variable with the
corresponding index and hashing the result using the Keccak hash function [8].
In our model, the location of the storage cell which holds the value of an element
ix of a reference type which is stored at location loc is obtained by concatenating
ix with loc separated by a dot:

h(loc, ix)
def
= ix + “.” + loc (1)

4 B. Thornton and D. Marmsoler

Stack The stack stores the values for variables which can either be concrete
values (for value type variables) or pointers to either memory, calldata, or storage
(for reference type variables). Thus, a stack can be modelled as a store which can
contain four different types of values:

Stackvalue ::= Simple(Valuetype) | Memptr(Loc) | CDptr(Loc) | Stoptr(Loc)

Stack
def
= Store(Stackvalue)

Memory, calldata, and storage Solidity supports three additional stores for
storing the value of reference types. While memory and calldata support only
arrays, storage also supports mappings:

MTypes ::= MTValue(Types) | MTArray(Nat,MTypes)

STypes ::= STValue(Types)

| STArray(Nat,STypes) | STMap(Types,STypes)

The internal organization of the three stores differ fundamentally. While
memory and calldata use pointer structures to organize the values of reference
types, storage values are accessed directly by computing the corresponding
location. Thus, we model memory and calldata as stores which can contain two
different types of values:

Memoryvalue ::= Value(Valuetype) | Pointer(Loc)

Memory
def
= Store(Memoryvalue)

Calldata
def
= Memory

Storage, on the other hand is modelled as a simple mapping from locations to
value types:

Storage
def
= Loc⇀Valuetype

Storage access is non-strict, which means that access to an undefined storage
cell returns a default value. To this end, we first define a function

ival : Types → Valuetype

which returns a default value for each value type. Then, we can define a corres-
ponding access function for storage:

accessStorage : Types× Loc× Storage → Valuetype

accessStorage(t, l, s)
def
=

{
v, if s(l) = v⊥

ival(t), if s(l) = ⊥

Our model also provides several functions to copy structures between different
stores. For example,

cpm
m : Loc× Loc× Int×MTypes×Memory ×Memory → Memory⊥

cpm
m (ls, ld, x, t,ms,md)

def
= iter ′(λi,m. cprecmm(h(ls, ⌊i⌋), h(ld, ⌊i⌋), t,ms,m),md, x)

Type Safety for Isabelle/Solidity 5

can be used to copy x elements of type t from location ls of memory/calldata ms

to location ld of memory/calldata md. In the above definition iter ′ is a function
which executes a given function several times and accumulates its results.

States A state of a Solidity program consists of the balances of the accounts, as
well as the current configuration of the different stores and the remaining amount
of gas (an abstract unit of computation):

State
def
= (Address → Accounts)× (Address → Storage)

×Memory × Stack×Nat

Note that each address has its own storage. In the following, we use acc(st),
sto(st), mem(st), sck(st), and gas(st) to access the account, storage, memory,
stack, and gas component of state st . Moreover, we shall use

stLacc := a, sto := smem := m, sck := k, gas := gM

to update the gas, account, stack, memory, and storage, of state st to g, a, k, m,
and s, respectively.

2.3 Environments

Variables are always interpreted w.r.t. an environment that assigns them types
and denotable-values (denvalues). They can be either a stack reference or storage
reference, which denote the value of the variable, and refer to either a valuetype
or a complex data type in one of the stores.

Type ::= Value(Types) | Calldata(MTypes)

| Memory(MTypes) | Storage(STypes)

Denvalue ::= Stackloc(Loc) | Storeloc(Loc)

In addition to the type and value of variables, an environment contains the
address of the executing contract, the address triggering the execution, and the
amount of money sent with it:

Environment
def
= Address×Address×Valuetype

× (Identifier⇀Type×Denvalue)

We use address(env), sender(env), svalue(env), denvalue(env) to denote the
address, sender, obtained funds, and denvalue of an environment env .

To support the creation of fresh environments our model provides a function

empty : Address× Identifier×Address×Valuetype → Environment

where empty(a, c, s, v) creates a fresh environment with address a, contract c,
sender s, value v, and empty type/denvalue.

6 B. Thornton and D. Marmsoler

To help with the declaration of new variables, our model provides a function

decl : Identifier×Type× (Stackvalue×Type)⊥ ×Bool×Calldata×Memory

× (Address× Storage)×Calldata×Memory × Stack×Environment

⇀(Calldata×Memory × Stack×Environment)

The idea is that decl(id , tp, val⊥, copy , cd ,mem, sto, c,m, k, e) = (cl,ml, kl, el)⊥
creates a new environment el and corresponding calldata cl, memory ml, and
stack kl from an existing environment e with calldata c, memory m, and stack
k. The new environment includes a new variable id of type tp initialized with
an optional value val . In the case where val is ⊥, id is initialized with a default
value. copy is a flag that indicates whether memory should be copied from the
mem parameter. Copying is required, for example, during external method calls.
cd , mem, sto are the original calldata, memory, and storage, respectively, which
are used as the sources.

2.4 Expressions and Statements

Expressions Our subset of Solidity supports basic logical and arithmetic opera-
tions over signed and unsigned integers of various bit sizes. Moreover, it allows
referencing elements of complex data types, creating addresses, querying the
balances of addresses, or obtaining the address of the currently executing contract.
Finally, it allows calling internal and external functions and obtaining the address
that triggered the current execution and the value which was sent with it.

The corresponding syntax of expressions is given by a data type E defined as
follows:

B ::= 8 | 16 | . . . | 256
L ::= Id(Identifier) | Ref (Identifier, [E])

E ::= SInt(B, Int) | UInt(B, Int) | E+E | E−E

| True | False | E==E | E<E | ¬E | E∧E | E∨E
| Address(String) | Balance(E) | L(L) | This | Sender | Value
| Call(Identifier, [E]) | ECall(E, Identifier, [E]) | Contracts

where String denotes the type of strings, Identifier is just a synonym for String,
and [a] denotes a list of elements of type a.

Our model also provides a formal semantics for expressions. It is given in the
form of a function expr(exp, ev, cd, st) which maps an expression, environment,
calldata and state to a well defined result state. This result state can be either
a normal state (N) for case where an expression terminates correctly and (E)
otherwise.

Type Safety for Isabelle/Solidity 7

Statements The syntax of statements is given by datatype S defined as follows:

S ::= Skip | L = E | S ; S | Ite(E,S,S) | While(E,S) | Transfer(E,E)

| Block((Identifier×Type× E⊥),S) | New(Identifier, [E],E)

| Invoke(Identifier, [E]) | External(E, Identifier, [E],E)

Again, our model provides a formal semantic for statements in the form of
a function stmt(sm, ev, cd, st), which maps a statement, environment, calldata,
and state to a well defined result state.

One statement which is of particular interest for this work is assignments
which alter the stores. Assignments are special in Isabelle/Solidity when complex
data types, such as arrays, are involved. In particular, if the left- and right-hand
sides are both located in memory, then the assignment only changes the pointer.
However, if one of the two is storage and the other is memory, then the assignment
executes an actual copy.

3 Defining Type Safety

We define type safety of Solidity over contract environments and their respective
stores. A given environment ev is considered type safe with respect to a set of
accounts acc, a stack sck, a memory mem, a storage sto and a calldata cd if they
satisfy the following function:

TypeSafe(ev, acc, sck,mem, sto, cd)
def
= TypeConsistency(ev, sck,mem, cd, sto)

∧UniqStLocs(denvalue(ev)) ∧CompPnts(sck, sto(address(ev)), denvalue(ev))

∧CompPnts(sck,mem, denvalue(ev)) ∧ CompPnts(sck, cd, denvalue(ev))

∧LessTLocs(sck) ∧ LessTLocs(mem) ∧ LessTLocs(cd)

∧SafeCont(sto,EnvP) ∧MNoPrefxs(EnvP) ∧VBalT (acc)

∧VSTypes(svalue(ev))

3.1 Type Consistency

Type consistency is the key property we consider when defining type safety and
its definition requires considering two key components. The stores contained
within the state, which contain the values of variables (Sec. 2.2), and the denvalue
of the environment, which is its type environment and maps their variables to
their store locations and types (Sec. 2.3).

Type consistency of an environment and a state’s stores requires that the types
of the variables specified in denvalue are consistent with their actual values in the
stores. Recall that the Valuetype, which represent the values which are stored,
is synonymous with the String type (Sec. 2.1). As a result of this our storage
model is very generalized with all the contents being of String type. Thus, in

8 B. Thornton and D. Marmsoler

our context, type consistency can only guarantee that the content of a given store
location (associated with a variable in the denvalue) can be correctly interpreted
to a value of its type. Notably this means that locations which have become
disconnected from the denvalue, floating pointers, are not checked. However, this
is not a problem for our semantics as these values should not be accessible using
the statements and expressions we currently

Type consistency of value types To determine whether a given string value
conforms to a given type we define the function

TypeCon : Types×Valuetype → Bool, where

TypeCon(t, v)
def
=

(v = “True” ∨ v = “False”) if t = TBool

“.” /∈ v if t = TAddr

1 if t = TUInt(b)

2 if t = TSInt(b)

1 = ⌈v⌉ ≥ 0 ∧ ⌈v⌉ < 2b ∧ ⌊⌈v⌉⌋ = v

2 = ⌈v⌉ ≥ −(2b−1) ∧ ⌈v⌉ < 2b−1 ∧ ⌊⌈v⌉⌋ = v

The cases where type t is a boolean or address are trivial, in the case of
booleans we require the string v to be either “True” or “False” and for addresses
we just require that the address does not contain a “." to prevent conflicts
with our memory address indexing method. For unsigned integers, the integer
representation of v must be greater than or equal to 0 and must also be less than
the maximum value that can be represented by the bit size b. Similarly, unsigned
integers must fall between the minimum and maximum values which can be
supported by size b. In addition to the size constraint there is an additional
property that string representations of integers must hold. Converting v to an
integer and then back to a string must remain the same. The reason for this
is that Solidity does not allow numeric values with preceding zeros, but this
restriction is not present for our stores which only operate over Valuetype. It is
therefore possible to have the string "0001" in a store. This property of TypeCon
prevents this for type consistent stores.

Type consistency of reference types In addition to the value types we also
support reference types. These types include memory, calldata and storage arrays
and also storage maps. The concept of verifying these types is much the same,
involving traversing the structure of the reference type to check every Valuetype
element it contains. The major difference is with the traversal mechanism as
memory and calldata support pointers while storage accesses locations directly.

Note that we only consider a reference type structure to be type consistent if
all of its elements are type consistent. We do not allow for partial conformity. We
also do not consider partially initialized arrays to be type safe, this is because
Solidity initializes all arrays with default values on declaration and thus every
location of an array must have a value.

Type Safety for Isabelle/Solidity 9

The function MCon is defined to check the type consistency for memory and
calldata arrays for a type t, memory (or calldata) m and location loc.

MCon : MTypes×Memory × Loc → Bool, where

MCon(t,m, loc)
def
=

{
1 if t = MTValue(typ)

2 if t = MTArray(len, subTyp)

1 =

{
TypeCon(t, v) if accessStore(loc, m) = Value(v)

False otherwise

2 = ∀i < len

subTyp = MTValue(t′) if accessStore(h(loc, i), m)

∧TypeCon(t′, v) = Value(v)

subTyp = MTArray(len′, subTyp′) if accessStore(h(loc, i), m)

∧MCon(subTyp′,m, ptrLoc) = Pointer(ptrLoc)

False otherwise

MCon first distinguishes between whether the type being examined is an MTArray
or an MTValue. In the MTValue case, the string value v located at loc in m
is retrieved. If this is a Valuetype, then the v is checked against type t using
TypeCon. If the accessed value is not a Valuetype, for example a Pointer , MCon
returns false. The reason for this is that, while a Pointer is a String in the store,
it is not considered a valid value, instead indicating the address prefix of the
next array. For the MTArray case the loc which is passed to MCon represents
the prefix location for all elements in the array to be checked. We access each
element individually using a location hash (Eq. 1), where the index i is limited
to be less than the length of the array len, due to the zero indexing of arrays. If
the accessed value v is a Valuetype, then the subtype of the array, must be an
MTValue and TypeCon must hold. Otherwise, if the accessed value is a Pointer
to the start of the next sub array, the subType must be an MTArray type and
each index of this sub array must satisfy MCon. Finally, if accessing the index
returns nothing, then MCon returns false. This prohibits both null pointers and
also partially initialized arrays.

To verify storage locations, a similar function SCon is defined:

SCon : STypes× Loc× Storage → Bool,where

SCon(t, loc, stor)
def
=

1 if t = (STValue typ)

2 if t = (STArray len subTyp)

3 if t = (STMap keyT subTyp)

1 = TypeCon(typ, accessStorage(typ, loc, stor))

2 = ∀i < len.SCon(subTyp, (h loc i), stor)

3 = ∀i :: string.(typeCon keyT i) =⇒ SCon(subTyp, (hloci), stor)

For the array case, SCon operates similarly to MCon, however, as storage
does not use pointers to reference structures there is no need to look up a pointer

10 B. Thornton and D. Marmsoler

before indexing the array. The case for STValues is also similar to MCon, however,
there is no need to check the return of accessStorage as it will always return either
an existing value or the default value of the type typ which is type consistent by
construction. Mappings (STMap) are unique to storage and support mappings
from a key to a value. The key can be any value but must conform to the key
type (keyT). Additionally, a key must always have a value. Thus, STMaps are
considered type consistent if TSSCon holds for all key values i, which conform
to keyT .

Type consistency of environments and stores Finally, the following function
determines whether the values in a set of stores are type consistent with an
environment.

TypeConsistency : Environment× Stackvalue×
Memory ×Calldata× Storage → Bool, where

TypeConsistency(ev, sck,mem, cd, stor)
def
=

∀(t, l) ∈ range(denvalue(ev)) =⇒{
1 if l = Stackloc(loc)

t = Storage(typ) ∧ SCon(typ, ptr, stor(address(ev))) if l = Storeloc(loc)

Type consistency checks the types t and locations l for all the variables stored
within the range of the denvalue of the environment ev. We then distinguish
between variables which are referenced from the stack and those stored in storage.
For locations on the stack we do the following:

1 =

t = Value(typ) ∧ TypeCon(loc, typ)

if accessStore(loc, sck) = Simple(val)

t = Memory(typ) ∧MCon(typ,mem, ptr)

if accessStore(loc, sck) = Memptr(ptr)

t = Calldata(typ) ∧MCon(typ, cd, ptr)

if accessStore(loc, sck) = CDptr(ptr)

t = Storage(typ) ∧ SCon(typ, ptr, stor(address(ev)))

if accessStore(loc, sck) = Stoptr(ptr)

First, we look up the corresponding value from the stack using l and then further
distinguish between four cases. In the case where a Simple element is stored, the
corresponding type t must be a Value type. The string value val is then checked
against the type typ using TypeCon. Alternatively, the l could correspond to a
pointer ptr for a reference type. In these cases, t must be one of the store types
and correspond to the same store as ptr. Moreover, the structure of the ptr in
the store must correspond to the type which is checked using the appropriate
function. Note that in the case of storage pointer, the storage for the current
contract, which is using ev, is used stor(address(ev)). The process is similar for

Type Safety for Isabelle/Solidity 11

cases where l is a storage location. The only difference is that we do not need
to reference a pointer before checking the structure with SCon as the location
points to storage directly.

3.2 Structural Consistency

In addition to ensuring that the stores are consistent with each entry in the
type environment, it is also important to ensure that the type environment is
consistent with itself and the layout of the store. To ensure this, we have a number
of properties to ensure that structual consistency is maintained.

This includes ensuring that if two variables in the denvalue point to the
same stack location, then their types must be the same (UniqStLocs). Further,
there must be consistency between the stack and the stores (CompPnts). If two
variables with different Stacklocs contain pointers to the same store and the
pointers have the same location or are sublocations of one another then their
types must be the same or compatible. This is true for pointers to all three stores.
We also enforce that memory, calldata and stacks must not contain any values at
locations which are greater than the top location of the store (LessTLocs).

3.3 Contract Related Properties

Smart contracts can have member variables which are always stored in storage
(using STypes). When a contract is initialized these member variables are loaded
into the store and their references are added to the type environment. Therefore,
we require that all contracts in the contract environment EnvP must have type
consistent member variables (SafeCont) with respect to their stores. Additionally,
member variables should not reference each other, as when they are defined in
Solidity (before the contract is created), this would not be possible (MNoPrefxs).
Contracts also have a balance which stores the current amount of cryptocurrency
associated with a contract and a evalue which represents the funds sent to the
contract at the time of a contract call. We require that both of these values must
conform to an appropriate type (VBalT , VSTypes).

4 Verifying Type Safety

Type safety of Solidity can primarily be violated in one of two ways: A statement
or expression changes the values in the stores, i.e. assignments. A statement or
expression alters the denvalue, i.e. a new variable is declared or a new environment
is created.

Statements are the primary way in which these alterations may occur and so
we must verify that the type safety of the environment is preserved after each
statement. Resulting in the following lemma:

12 B. Thornton and D. Marmsoler

Lemma 1 (TypeSafe_Statements).

TypeSafe(ev , acc(st), sck(st),mem(st), sto(st), cd)∧ (2)
stmt(smt, ev, cd, st) = N((), st′) (3)
=⇒ TypeSafe(ev , acc(st ′), sck(st ′),mem(st ′), sto(st ′), cd) (4)

Given an environment ev which is type safe with respect to the accounts, stack,
memory and storage of a state st and of calldata cd (Eq. 2). Then, for every
statement which terminates normally and returns an updated state st′ (Eq. 3),
ev remains type safe with respect to the stores in the new st′ and the original
calldata cd , which remains un-changed (Eq. 4).

Proof. The proof is by induction over the statements with arbitrary st′. For non-
trivial cases each statement is then proven by constructing a series of abstract
states which follow the definition of the current statement while demonstrating
that each state preserves type safety. ⊓⊔

Statements rely on expressions when working with variables in the state. Thus,
we also proved the following lemma:

Lemma 2 (TypeSafe_Expressions).

TypeSafe(ev , acc(st), sck(st),mem(st), sto(st), cd) ∧ (5)
expr(exp, ev, cd, st, g) = N((v, t), g′) =⇒ (6)

TypeCon(loc, typ) ∧ v = Simple if t = Value(typ)

MCon(typ,mem(st), ptr) ∧ v = Memptr if t = Memory(typ)

MCon(typ, cd, ptr) ∧ v = CDptr if t = Calldata(typ)

SCon(typ, ptr, sto(st)(address(ev))) ∧ v = Stoptr if t = Storage(typ)

(7)

Given a type safe environment ev (Eq. 5), the lemma states that for an expression
exp which terminates normally and returns a value v and type t (Eq. 6), v is
indeed a compatible string representation for a variable of type t (Eq. 7).

Proof. Similar to TypeSafe_Statements, this lemma is proven by induction over
the expressions and shown for each case. ⊓⊔

In the following we discuss some of the more complex aspects of the proof.

4.1 Verifying Memory/Calldata Reference Types

If a location containing a simple value type is altered, the only requirement is
to show that the new value is consistent with the type of the location in the
denvalue. However, for arrays the requirements are more complex. The reason
for this is that not only is it necessary to verify the location that has changed is
consistent, it is also necessary to check that any variables that may reference the
location also remain consistent.

Type Safety for Isabelle/Solidity 13

One particularly interesting case is when assigning a memory array with a
calldata array as a value. During this process the array is copied from calldata
to memory. This is handled by the function cpm

m discussed in Sec. 2.2. Thus,
we needed to verify that cpm

m does not violate type safety (We verified similar
properties for all other copy functions).

To demonstate that executing cpm
m does not violate type safety it is only

necessary to show that the segment of the destination memory which is altered by
cpm

m is MCon. Essentially, this requires showing that the result of cpm
m is MCon

for the structure that has been copied at the location in the destination it was
copied to. To this end, we verified the following lemma.

Lemma 3 (MCon_cpm2m).

MCon(MTArray(x, t),ms, ls) ∧ x > 0 ∧ (8)
cpm

m (ls, ld , x , t ,ms,md) = updM ∧ (9)
=⇒ MCon(MTArray(x, t)aa, updM, ld) (10)

Eq. 8 establishes that the source memory/calldata store ms is MCon with respect
to an MTArray type of length x and subtype t at the prefix location ls. Further,
x is a nat greater than zero, as array lengths must be greater than zero. Eq. 9 then
states that cpm

m , which copies the sub-elements of the MTArray(x, t) from ms to
the destination memory (or calldata) md to location ld, terminates normally and
returns an updated memory/calldata updM . Finally, Eq. 10 shows that updM is
MCon with respect to the MTArray(x, t), but at the destination location ld.

Proof. As cpm
m is a mutually recursive definition using iter ′ and cprecmm we first

expand the definition of cpm
m . We then perform induction over the length of the

x which are all the indices of the source array being copied. For the non-trivial
case (x > 0) we then apply structural induction over the MTypes (t). For
cases where t is a further MTArray we again apply an additional induction over
the sub-arrays length for iter ′. The intuition here is that if cprecmm correctly
reconstructs a copy of the source structure, and that structure was MCon in the
source, then the structure should also be MCon in the destination. ⊓⊔

4.2 Internal and External Method Calls

Internal and External method calls (ECall ,Call) are another interesting aspect
of the verification. When calling external methods, a new state is created with an
empty stack and memory, and a new environment with a new denvalue in which
the external contracts member variables are loaded. This state and environment
are then used to load the method parameters, using load and decl .

The result of this loading process is then used to execute the method body.
As method bodies are defined using expressions, Lemma 2 can be used to show
that their return values are type consistent. However, in order to use Lemma 2,
we must show that the environment and stores being used for the execution of
the method body are type safe.

14 B. Thornton and D. Marmsoler

To verify that the new environment is type safe we proved three lemmas:
ffoldInitTypeSafe which confirms that the fresh environment is type safe, and
TypeSafeDecl and TypeSafeLoad which verify that the environment remains type
safe after the variables have been loaded. The lemma ffoldInitTypeSafe is
trivial as an environment with only contract member variables is by definition
type safe, and so we will focus on TypeSafeDecl and TypeSafeLoad .

Lemma 4 (TypeSafeLoad).

TypeSafe(lev0 , acc(lst), sck(lst),mem(lst), sto(lst), lcd0) ∧ (11)
TypeSafe(lev , acc(lst), lk , lm, sto(lst), lcd) ∧ (12)
∀locs typs. ¬ lcp =⇒ MCon(tp,mem(lst), locs) =⇒ MCon(tp, lm, locs) (13)
(∀ev cd k m g′.

load(lcp, lis, lxs, lev0, lcd0, lk, lm, lev, lcd, lst, lg) = N((ev, cd, k,m), g′)

=⇒ TypeSafe(ev, acc(lst), k,m, sto(lst), cd)) (14)

Eq. 11 and Eq. 12 state that the source and destination environments are
type safe with respect to the accounts, stack, memory and storage of a state lst
and of calldata lcd0 and lcd respectively. Eq. 13 states that for internal method
calls, where a copy is not taking place (¬ lcp), all locations and types which
are MCon for the source memory are also MCon for the destination memory.
Finally, equation Eq. 14 states that for results of load which terminate in a N
state, load returns an environment ev which is TypeSafe with respect to the
returned calldata cd , stack k , memory m and the storage and accounts of lst.

Proof. The proof is by induction over the elements of the list of variables to be
loaded (lis). The base case (empty list) is trivial as the destination elements
lev lcd lm lk are returned. For the inductive case it is necessary to show that
after the current head of the list is loaded using decl the resultant environment is
type safe, this is verified using Lemma 5. When using the TypeSafeDecl lemma
we pass the assumptions of TypeSafeLoad . In addition to the knowledge that the
current value and type (v, t′′) being declared (the head of list lxs) is the result
of an expression and so is typeCon using Lemma 2. ⊓⊔

Lemma 5 (TypeSafeDecl).

TypeSafeLoad(amms) ∧ (15)
∀ts.tp ̸= Storage(ts) ∧ (16)
decl(ip, tp, (v, t

′′), lcp, lcd,mem(lst), (sto(lst)address(lev0)), (lcd0, lm, lk, lev0))

= N((e, c′, k′,m′), g′) (17)
=⇒ TypeSafe(e, acc(lst), k′,m′, sto(lst), c′) ∧ (18)

(∀locs typs. ¬ lcp =⇒ MCon(tp,mem(lst), locs) =⇒ MCon(tp,m′, locs))
(19)

As decl is called from the context of load, we pass the assumptions of TypeSafeLoad
to TypeSafeDecl (Eq. 15). In addition, Eq. 16 establishes that the type being

Type Safety for Isabelle/Solidity 15

added to the denvalue tp is not a Storage type. Then, Eq. 17 requires that
decl terminates in a N state and returns an environment e calldata c′, stack k ′

and memory k ′. Eq. 18 concludes that e is TypeSafe with respect to k ′, c′, m ′,
and the accounts and storage of the source state lst . Finally, Eq. 19 states that
for internal method calls all locations and types which are MCon in the source
memory mem(lst) are also MCon in the resultant memory m′.

Proof. The proof for TypeSafeDecl is a case split over the outcome of decl . Trivial
cases such as when tp is a Valuetype are proven by unfolding the definitions
and more complex cases, such as declaring array types are handled using the
MCon_cp(m/s)2m lemmas which ensures the changes being made are MCon. ⊓⊔

5 Related Work

Verification of type safety in Isabelle Type safety has been formalized and
verified in Isabelle. One famous example is the formalization and verification of
the soundness of a static type system for IMP [25]. In addition, there have been
verification of type safety aspects for real programming languages in Isabelle, such
as Java [27], C++ [28], ecc. Compared to traditional programming languages,
Solidity provides some specialized features, such as the different types of stores.
Thus, by providing a formalization of type safety for Solidity we complement this
line of research.

Formalizations of Solidity Another line of research which is related to our work
concerns formalizations of Solidity. As outlined by Almakhour et al. [3] and
Tolmach et al. [26], there is a growing amount of research investigating the
formalization of Solidity. Early work in this area was done by Bhargavan et
al. [9] who describe an approach to map a Solidity contract to F* where it can
then be verified. TinySol [6] and Featherweight Solidity[12], on the other hand,
are two calculi formalizing some core features of Solidity. Crosara et al. [13]
describe an operational semantics for a subset of Solidity. Moreover, Ahrendt and
Bubel describe SolidiKeY [2], a formalization of a subset of Solidity in the KeY
tool [1] to verify data integrity for smart contracts. In addition, Jiao et al. [15,16],
provide a formalization of Solidity in K. While all of these works focus on the
formalization of Solidity, none of them investigate type safety aspects.

Verification of type safety for Solidity Crafa et al. [12] investigate soundness of
a static type system for Featherweight Solidity (a formalization of a subset of
Soldity). In their work, they identify problems with the Solidity type system and
propose an alternative one. Our work differs in two main aspects from their work.
First, they focus on the verification of soundness of the base types of Solidity,
with our work we also focus on verifying consistency of the complex types, such
as, memory arrays and their pointer structures. Second, FS is a restricted subset
of Solidity which lacks many features of modern Solidity. For example FS does
not support the various types of stores which are available to a Solidity program
and which pose a particular challenge to the verification of type safety.

16 B. Thornton and D. Marmsoler

6 Conclusion

With this paper we describe our work on a type-safe version of Solidity. To this
end, we first provide a formalization of type-safety for Solidity programs. Then
we verify that our semantics of Solidity preserves type-safety in Isabelle.

Technical Challenges One of the key technical challenges in verifying type safety
for Solidity is the complexity of the different stores and the pointer/addressing
scheme used for reference types in Solidity. This is even more pronounced when
verifying the type safety of statements such as Assign, which have many cases
and a semantics which changes dependent on the storage types involved. We
found that the interactions between the different stores made deriving properties
for type safe environments very difficult and that verification of those properties
required the largest amount of the proof effort.

We have covered some of the more complex aspects in this paper. The
formalization of the MCon and SCon properties which are able to check the
type consistency of memory and storage reference types. We also examined
the verification effort for ensuring the type consistency of copying between the
different stores (Lemma 3) and declaring and loading new states and environments
which contain reference types (Lemma 4, Lemma 5).

Type issues in Isabelle/Solidity While we did not identify any type issues of
Solidity as a language for our definition of type safety however we did detect
a number of issues in our formalization. In total, we found 13 issues with our
formalization, 12 of these were related to missing type checks without which the
type safety of the environment could be violated. The remaining issue was a bug
in the operation of the semantics. Importantly 10 of the 13 issues were related to
functions which operated over reference types, demonstrating the complexity of
these types. To highlight some of these issues:
– cprecmm did not correctly traverse the pointer structure of the source memory/c-

alldata. While we accessed the pointers from the store we did not use those
pointers as the prefix for the next indexed location. As a result any pointer
which did not point to itself would not have been reached.

– Call was able to accept storage reference types as parameters. This is pro-
hibited in Solidity.

– decl did not verify that the type of the variable being declared in storage
matched the type of the value being added to the denvalue. This would result
in mismatched types between the stores and the denvalue.

Future work The type system discussed in this paper uses untyped stores in
combination with a typing environment and can only be checked at runtime.
Thus, future work should focus on the development of a static, strongly typed,
type system which can also be checked at compile time.

Acknowledgments We thank the anonymous reviewers of ICTAC 2024 for their
careful reading and constructive comments to improve an earlier version of
this paper. This work was supported by the Engineering and Physical Sciences
Research Council [grant number EP/X027619/1].

Type Safety for Isabelle/Solidity 17

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.:
Deductive software verification–the KeY book, vol. 10001. Springer (2016). https:
//doi.org/10.1007/978-3-319-49812-6

2. Ahrendt, W., Bubel, R.: Functional verification of smart contracts via strong data
integrity. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal
Methods, Verification and Validation: Applications. pp. 9–24. Springer International
Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-61467-6_2

3. Almakhour, M., Sliman, L., Samhat, A.E., Mellouk, A.: Verification of smart
contracts: A survey. Pervasive and Mobile Computing 67, 101227 (2020). https:
//doi.org/10.1016/j.pmcj.2020.101227

4. Authors, S.: Solidity developer survey 2023 results (2024), https://soliditylang.
org/blog/2024/04/03/solidity-developer-survey-2023-results/

5. Azaria, A., Ekblaw, A., Vieira, T., Lippman, A.: Medrec: Using blockchain for med-
ical data access and permission management. In: 2016 2nd International Conference
on Open and Big Data (OBD). pp. 25–30 (2016). https://doi.org/10.1109/OBD.
2016.11

6. Bartoletti, M., Galletta, L., Murgia, M.: A minimal core calculus for Solidity
contracts. In: Pérez-Solà, C., Navarro-Arribas, G., Biryukov, A., Garcia-Alfaro, J.
(eds.) Data Privacy Management, Cryptocurrencies and Blockchain Technology. pp.
233–243. Springer (2019). https://doi.org/10.1007/978-3-030-31500-9_15

7. Berghofer, S., Wenzel, M.: Inductive datatypes in hol — lessons learned in formal-
logic engineering. In: Bertot, Y., Dowek, G., Théry, L., Hirschowitz, A., Paulin,
C. (eds.) TPHOLs. pp. 19–36. Springer (1999). https://doi.org/10.1007/3-540-
48256-3_3

8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT. pp. 313–314. Springer (2013). https://doi.
org/10.1007/978-3-642-38348-9_19

9. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier, G.,
Kobeissi, N., Kulatova, N., Rastogi, A., Sibut-Pinote, T., Swamy, N., Zanella-
Béguelin, S.: Formal verification of smart contracts: Short paper. In: Programming
Languages and Analysis for Security. p. 91–96. PLAS, ACM (2016). https://doi.
org/10.1145/2993600.2993611

10. Chavez-Dreyfuss, G.: Sweden tests blockchain technology for land registry.
https://www.reuters.com/article/us-sweden-blockchain-idUSKCN0Z22KV, ac-
cessed: 2023-04-18

11. Clegg, P., Jevans, D.: Cryptocurrency crime and anti-money laundering report.
Tech. rep., CipherTrace (2021)

12. Crafa, S., Di Pirro, M., Zucca, E.: Is Solidity solid enough? In: Bracciali, A., Clark, J.,
Pintore, F., Rønne, P.B., Sala, M. (eds.) Financial Cryptography and Data Security.
pp. 138–153. Springer (2020). https://doi.org/10.1007/978-3-030-43725-1_11

13. Crosara, M., Centurino, G., Arceri, V.: Towards an Operational Semantics for
Solidity. In: van Rooyen, J., Buro, S., Campion, M., Pasqua, M. (eds.) VALID.
pp. 1–6. IARIA (Nov 2019)

14. Ethereum: Solidity. https://docs.soliditylang.org/, accessed: 2023-05-04
15. Jiao, J., Kan, S., Lin, S.W., Sanan, D., Liu, Y., Sun, J.: Semantic understanding of

smart contracts: executable operational semantics of Solidity. In: SP. pp. 1695–1712.
IEEE (2020). https://doi.org/10.1109/SP40000.2020.00066

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-030-61467-6_2
https://doi.org/10.1007/978-3-030-61467-6_2
https://doi.org/10.1016/j.pmcj.2020.101227
https://doi.org/10.1016/j.pmcj.2020.101227
https://doi.org/10.1016/j.pmcj.2020.101227
https://doi.org/10.1016/j.pmcj.2020.101227
https://soliditylang.org/blog/2024/04/03/solidity-developer-survey-2023-results/
https://soliditylang.org/blog/2024/04/03/solidity-developer-survey-2023-results/
https://doi.org/10.1109/OBD.2016.11
https://doi.org/10.1109/OBD.2016.11
https://doi.org/10.1109/OBD.2016.11
https://doi.org/10.1109/OBD.2016.11
https://doi.org/10.1007/978-3-030-31500-9_15
https://doi.org/10.1007/978-3-030-31500-9_15
https://doi.org/10.1007/3-540-48256-3_3
https://doi.org/10.1007/3-540-48256-3_3
https://doi.org/10.1007/3-540-48256-3_3
https://doi.org/10.1007/3-540-48256-3_3
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1145/2993600.2993611
https://doi.org/10.1145/2993600.2993611
https://doi.org/10.1145/2993600.2993611
https://doi.org/10.1145/2993600.2993611
https://www.reuters.com/article/us-sweden-blockchain-idUSKCN0Z22KV
https://doi.org/10.1007/978-3-030-43725-1_11
https://doi.org/10.1007/978-3-030-43725-1_11
https://docs.soliditylang.org/
https://doi.org/10.1109/SP40000.2020.00066
https://doi.org/10.1109/SP40000.2020.00066

18 B. Thornton and D. Marmsoler

16. Jiao, J., Lin, S.W., Sun, J.: A generalized formal semantic framework for smart
contracts. In: Wehrheim, H., Cabot, J. (eds.) FASE. pp. 75–96. Springer (2020).
https://doi.org/10.1007/978-3-030-45234-6_4

17. Kelly, J.: Banks adopting blockchain ’dramatically faster’ than expected: IBM.
https://www.reuters.com/article/us-tech-blockchain-ibm-idUSKCN11Y28D
(2016), accessed: 2023-05-04

18. Llama, D.: Tvl breakdown by smart contract language (jun 2024), https://
defillama.com/languages

19. Marmsoler, D., Brucker, A.D.: A Denotational Semantics Of Solidity In Isa-
belle/HOL. In: Software Engineering and Formal Methods: 19th International
Conference, SEFM 2021, Virtual Event, December 6–10, 2021, Proceedings. pp. 403–
422. Springer-Verlag, Berlin, Heidelberg (2021). https://doi.org/10.1007/978-
3-030-92124-8_23

20. Marmsoler, D., Brucker, A.D.: Conformance Testing of Formal Semantics Using
Grammar-Based Fuzzing. In: Kovács, L., Meinke, K. (eds.) Tests and Proofs. pp.
106–125. Springer International Publishing, Cham (2022). https://doi.org/10.
1007/978-3-031-09827-7_7

21. Marmsoler, D., Brucker, A.D.: Isabelle/solidity: A deep embedding of solidity in
isabelle/hol. Archive of Formal Proofs (July 2022), https://isa-afp.org/entries/
Solidity.html, Formal proof development

22. Mendling, J., Weber, I., Aalst, W.V.D., Brocke, J.V., Cabanillas, C., Daniel, F.,
Debois, S., Ciccio, C.D., Dumas, M., Dustdar, S., Gal, A., García-Bañuelos, L.,
Governatori, G., Hull, R., Rosa, M.L., Leopold, H., Leymann, F., Recker, J., Reichert,
M., Reijers, H.A., Rinderle-Ma, S., Solti, A., Rosemann, M., Schulte, S., Singh,
M.P., Slaats, T., Staples, M., Weber, B., Weidlich, M., Weske, M., Xu, X., Zhu, L.:
Blockchains for business process management - challenges and opportunities. ACM
Trans. Manage. Inf. Syst. 9(1) (feb 2018). https://doi.org/10.1145/3183367

23. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008). https:
//doi.org/10.2139/ssrn.3440802

24. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-
Order Logic (2002). https://doi.org/10.1007/3-540-45949-9

25. Nipkow, T., Klein, G.: Concrete semantics: with Isabelle/HOL. Springer (2014).
https://doi.org/10.1007/978-3-319-10542-0

26. Tolmach, P., Li, Y., Lin, S.W., Liu, Y., Li, Z.: A survey of smart contract formal
specification and verification. ACM Comput. Surv. 54(7) (jul 2021). https://doi.
org/10.1145/3464421

27. Von Oheimb, D., Nipkow, T.: Machine-checking the java specification: Proving
type-safety. In: Formal Syntax and Semantics of Java, pp. 119–156. Springer (2002).
https://doi.org/10.1007/3-540-48737-9_4

28. Wasserrab, D., Nipkow, T., Snelting, G., Tip, F.: An operational semantics and type
safety proof for multiple inheritance in c++. In: Proceedings of the 21st annual ACM
SIGPLAN conference on Object-oriented programming systems, languages, and
applications. pp. 345–362 (2006). https://doi.org/10.1145/1167515.1167503

29. YCharts.com: Ethereum transactions per day. https://ycharts.com/indicators/
ethereum_transactions_per_day, accessed: 2024-05-04

30. Yurcan, B.: How blockchain fits into the future of digital identity.
https://fintechranking.com/2016/04/10/how-blockchain-fits-into-the-
future-of-digital-identity/ (2016)

https://doi.org/10.1007/978-3-030-45234-6_4
https://doi.org/10.1007/978-3-030-45234-6_4
https://www.reuters.com/article/us-tech-blockchain-ibm-idUSKCN11Y28D
https://defillama.com/languages
https://defillama.com/languages
https://doi.org/10.1007/978-3-030-92124-8_23
https://doi.org/10.1007/978-3-030-92124-8_23
https://doi.org/10.1007/978-3-030-92124-8_23
https://doi.org/10.1007/978-3-030-92124-8_23
https://doi.org/10.1007/978-3-031-09827-7_7
https://doi.org/10.1007/978-3-031-09827-7_7
https://doi.org/10.1007/978-3-031-09827-7_7
https://doi.org/10.1007/978-3-031-09827-7_7
https://isa-afp.org/entries/Solidity.html
https://isa-afp.org/entries/Solidity.html
https://doi.org/10.1145/3183367
https://doi.org/10.1145/3183367
https://doi.org/10.2139/ssrn.3440802
https://doi.org/10.2139/ssrn.3440802
https://doi.org/10.2139/ssrn.3440802
https://doi.org/10.2139/ssrn.3440802
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-319-10542-0
https://doi.org/10.1007/978-3-319-10542-0
https://doi.org/10.1145/3464421
https://doi.org/10.1145/3464421
https://doi.org/10.1145/3464421
https://doi.org/10.1145/3464421
https://doi.org/10.1007/3-540-48737-9_4
https://doi.org/10.1007/3-540-48737-9_4
https://doi.org/10.1145/1167515.1167503
https://doi.org/10.1145/1167515.1167503
https://ycharts.com/indicators/ethereum_transactions_per_day
https://ycharts.com/indicators/ethereum_transactions_per_day
https://fintechranking.com/2016/04/10/how-blockchain-fits-into-the-future-of-digital-identity/
https://fintechranking.com/2016/04/10/how-blockchain-fits-into-the-future-of-digital-identity/

	Type Safety for Isabelle/Solidity

