
Secure Smart Contracts with Isabelle/Solidity
on 2025-09-08

Diego Marmsoler

Department of Computer Science
University of Exeter

d.marmsoler@exeter.ac.uk
www.marmsoler.com
@DiegoMarmsoler
@dmarmsoler.bsky.social

Joint work with Achim D. Brucker and Asad Ahmed

This work was supported by EPSRC [grant number EP/X027619/1].

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/X027619/1

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

1

1 Introduction
Smart Contracts
The Problem

2 Isabelle/Solidity
Overview
Banking Contract

3 Evaluation
Conformance Testing
Case Studies

4 Conclusion

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

2

1 Introduction
Smart Contracts
The Problem

2 Isabelle/Solidity
Overview
Banking Contract

3 Evaluation
Conformance Testing
Case Studies

4 Conclusion

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

3

Blockchain and Smart Contracts

Blockchain Novel technology to store data in decentralized and immutable
manner

• Main application: Cryptocurrencies
• Other: Finance, Healthcare, Identity Management, . . .

Smart Contracts Digital contracts which are automatically executed once
certain conditions are met

• Example: Payment release
• Every day hundreds of thousands of contracts are

deployed managing millions of dollars in assets

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

3

Blockchain and Smart Contracts

Blockchain Novel technology to store data in decentralized and immutable
manner

• Main application: Cryptocurrencies
• Other: Finance, Healthcare, Identity Management, . . .

Smart Contracts Digital contracts which are automatically executed once
certain conditions are met

• Example: Payment release
• Every day hundreds of thousands of contracts are

deployed managing millions of dollars in assets

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

4

Smart Contracts and Solidity

Technically, a smart contract (SC) is code which is deployed to a blockchain,
and which can be executed by sending special transactions to it

• Usually developed in a high-level programming language
• Most popular language: Solidity

Solidity
• Works on all EVM-based platforms, such as Ethereum, Polygon, . . .
• More than 90% of all smart contracts are developed using Solidity

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

4

Smart Contracts and Solidity

Technically, a smart contract (SC) is code which is deployed to a blockchain,
and which can be executed by sending special transactions to it

• Usually developed in a high-level programming language
• Most popular language: Solidity

Solidity
• Works on all EVM-based platforms, such as Ethereum, Polygon, . . .
• More than 90% of all smart contracts are developed using Solidity

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

5

A Simple Banking Contract in Solidity

Solidity1 contract Bank {
2 mapping(address => uint256) balances;
3
4 function deposit() external payable {
5 balances[msg.sender] = balances[msg.sender] + msg.value;
6 }
7
8 function reset() internal {
9 balances[msg.sender] = 0;

10 }
11
12 function withdraw() external {
13 uint256 bal = balances[msg.sender];
14 reset();
15 msg.sender.transfer(bal);
16 }
17 }

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

6

The Problem With Smart Contracts

As with every computer program, SCs may contain bugs which can be exploited

Since SCs are used to automate financial transactions, such exploits may result
in high economic losses

• Example: DAO attack in 2016 resulted in a loss of approximately $60M
• Since 2019, more than $5B have been lost due to vulnerabilities in SCs

Together with the fact that SCs are only difficult to update/remove it is
important to “get them right” before deployment

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

6

The Problem With Smart Contracts

As with every computer program, SCs may contain bugs which can be exploited

Since SCs are used to automate financial transactions, such exploits may result
in high economic losses

• Example: DAO attack in 2016 resulted in a loss of approximately $60M
• Since 2019, more than $5B have been lost due to vulnerabilities in SCs

Together with the fact that SCs are only difficult to update/remove it is
important to “get them right” before deployment

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

6

The Problem With Smart Contracts

As with every computer program, SCs may contain bugs which can be exploited

Since SCs are used to automate financial transactions, such exploits may result
in high economic losses

• Example: DAO attack in 2016 resulted in a loss of approximately $60M
• Since 2019, more than $5B have been lost due to vulnerabilities in SCs

Together with the fact that SCs are only difficult to update/remove it is
important to “get them right” before deployment

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

7

Smart Contract Verification

Popular approaches to verify Solidity smart contracts
Certora Chandrakana Nandi, Mooly Sagiv, and Daniel Jackson (2022)

SolCMC Leonardo Alt (2022)
solc-verify Ákos Hajdu and Dejan Jovanović (2020)

All based on SMT solvers
• Axiomatic: Easy to introduce inconsistencies (soundness)
• Automatic: Fail to verify more complex properties (completeness)

Isabelle/Solidity
• Foundational approach guarantees correctness by construction
• Based on HOL allows verification of more complex properties

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

7

Smart Contract Verification

Popular approaches to verify Solidity smart contracts
Certora Chandrakana Nandi, Mooly Sagiv, and Daniel Jackson (2022)

SolCMC Leonardo Alt (2022)
solc-verify Ákos Hajdu and Dejan Jovanović (2020)

All based on SMT solvers
• Axiomatic: Easy to introduce inconsistencies (soundness)
• Automatic: Fail to verify more complex properties (completeness)

Isabelle/Solidity
• Foundational approach guarantees correctness by construction
• Based on HOL allows verification of more complex properties

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

7

Smart Contract Verification

Popular approaches to verify Solidity smart contracts
Certora Chandrakana Nandi, Mooly Sagiv, and Daniel Jackson (2022)

SolCMC Leonardo Alt (2022)
solc-verify Ákos Hajdu and Dejan Jovanović (2020)

All based on SMT solvers
• Axiomatic: Easy to introduce inconsistencies (soundness)
• Automatic: Fail to verify more complex properties (completeness)

Isabelle/Solidity
• Foundational approach guarantees correctness by construction
• Based on HOL allows verification of more complex properties

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

8

1 Introduction
Smart Contracts
The Problem

2 Isabelle/Solidity
Overview
Banking Contract

3 Evaluation
Conformance Testing
Case Studies

4 Conclusion

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

9

Architecture of Isabelle/Solidity

WP
calculus

Solidity
embedding

Formalization
memory model

Formalization
state monad

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

9

Architecture of Isabelle/Solidity

Contract
definition Contract

WP
calculus

Solidity
embedding

Formalization
memory model

Formalization
state monad

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

9

Architecture of Isabelle/Solidity

Contract
definition Contract

WP
calculus

Solidity
embedding

Invariant Invariant
definition

Formalization
memory model

Formalization
state monad

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

9

Architecture of Isabelle/Solidity

Verification

Proof
obligations

User
proofs

Correctness
proof

Contract
definition Contract

WP
calculus

Solidity
embedding

Invariant Invariant
definition

Formalization
memory model

Formalization
state monad

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

10

Banking Contract In Isabelle/Solidity
Isabelle1 contract Bank

2 for balances: TMap (TValue TAddress) (TValue TSint)
3
4 constructor where
5 ⟨skip⟩
6
7 cfunction deposit external payable where
8 balances [⟨sender⟩] ::=s balances ∼s [⟨sender⟩] ⟨+⟩ ⟨value⟩ ,
9

10 cfunction reset where
11 balances [⟨sender⟩] ::=s ⟨sint⟩ 0 ,
12
13 cfunction withdraw external where
14 do {
15 bal :: TSint;
16 bal [] ::= balances ∼s [⟨sender⟩];
17 icall reset;
18 ⟨transfer⟩ ⟨sender⟩ (bal ∼ [])
19 }

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

11

Banking Contract In Isabelle/Solidity

Isabelle1 contract Bank
2 for balances: TMap (TValue TAddress) (TValue TSint)
3
4 constructor where
5 ⟨skip⟩
6
7 cfunction deposit external payable where
8 balances [⟨sender⟩] ::=s balances ∼s [⟨sender⟩] ⟨+⟩ ⟨value⟩ ,
9

10 ...

Generated artifacts
• Mutual recursive, partial function definitions
• Inductive proof rule

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

12

Invariant For Banking Contract In Isabelle/Solidity

P(balances, balance)?

Isabelle1 invariant sum_bal sb where
2 snd sb ≥
3

∑
ad. unat (sint (vt ((mp (fst sb balances)) (Address ad))))

4 for Bank

Generated artifacts
• Definition for invariant
• Specification and proofs for introduction and elimination rules

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

12

Invariant For Banking Contract In Isabelle/Solidity

∑
ad

balances(ad) ≤ balance

Isabelle1 invariant sum_bal sb where
2 snd sb ≥
3

∑
ad. unat (sint (vt ((mp (fst sb balances)) (Address ad))))

4 for Bank

Generated artifacts
• Definition for invariant
• Specification and proofs for introduction and elimination rules

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

12

Invariant For Banking Contract In Isabelle/Solidity

∑
ad

balances(ad) ≤ balance

Isabelle1 invariant sum_bal sb where
2 snd sb ≥
3

∑
ad. unat (sint (vt ((mp (fst sb balances)) (Address ad))))

4 for Bank

Generated artifacts
• Definition for invariant
• Specification and proofs for introduction and elimination rules

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

12

Invariant For Banking Contract In Isabelle/Solidity

∑
ad

balances(ad) ≤ balance

Isabelle1 invariant sum_bal sb where
2 snd sb ≥
3

∑
ad. unat (sint (vt ((mp (fst sb balances)) (Address ad))))

4 for Bank

Generated artifacts
• Definition for invariant
• Specification and proofs for introduction and elimination rules

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

13

Verifying Banking Contract In Isabelle/Solidity

Isabelle1 verification sum_bal:
2 sum_bal
3 K (K (K True))
4 deposit K (K (K True)) and
5 withdraw K (K (K True)) and
6 reset reset_post
7 for Bank

Generated artifacts
• Proof obligations
• Correctness proof by fixed-point induction

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

13

Verifying Banking Contract In Isabelle/Solidity

Isabelle1 verification sum_bal:
2 sum_bal
3 K (K (K True))
4 deposit K (K (K True)) and
5 withdraw K (K (K True)) and
6 reset reset_post
7 for Bank

Generated artifacts
• Proof obligations
• Correctness proof by fixed-point induction

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

14

Verifying Banking Contract In Isabelle/Solidity

Isabelle/Solidity generates one proof obligation for each method
• Constructor: Establishes invariant and post-condition
• Internal: Establishes post-condition
• External: Preserves invariant and establishes post-condition

Isabelle1
∧

call.
2 (

∧
x h r. effect (call x) h r =⇒ vcond x h r) =⇒

3 effect (deposit call) s r =⇒
4 inv_state sum_bal s =⇒
5 post s r sum_bal (K True) (K (K (K True)))

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

14

Verifying Banking Contract In Isabelle/Solidity

Isabelle/Solidity generates one proof obligation for each method
• Constructor: Establishes invariant and post-condition
• Internal: Establishes post-condition
• External: Preserves invariant and establishes post-condition

Isabelle1
∧

call.
2 (

∧
x h r. effect (call x) h r =⇒ vcond x h r) =⇒

3 effect (deposit call) s r =⇒
4 inv_state sum_bal s =⇒
5 post s r sum_bal (K True) (K (K (K True)))

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

15

Verifying Banking Contract In Isabelle/Solidity

Isabelle1 show "
∧

call.
2 (

∧
x h r. effect (call x) h r =⇒ vcond x h r) =⇒

3 effect (deposit call) s r =⇒
4 inv_state sum_bal s =⇒
5 post s r sum_bal (K True) (K (K (K True)))"
6 unfolding deposit_def
7 apply (erule post_exc_true, erule_tac post_wp)
8 unfolding inv_state_def deposit_post_def
9 apply vcg

10 apply (auto simp add: wpsimps)
11 apply (rule bal_msg_sender, assumption)
12 apply vcg
13 apply (auto simp add: wpsimps intro!: sum_balI 1)
14 apply vcg
15 apply (auto simp add: wpsimps)
16 apply (rule bal_msg_sender, assumption)
17 by vcg

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

16

Isabelle/Solidity Language Features

Isabelle/Solidity supports a large subset of Solidity
• Domain specific language features: payable, transfer, balance, . . .
• Advanced storage model: Storage, Memory, Calldata, Stack
• Semantic intricacies: fallback functions, safe/unsafe arithmetic, array

assignments

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

17

1 Introduction
Smart Contracts
The Problem

2 Isabelle/Solidity
Overview
Banking Contract

3 Evaluation
Conformance Testing
Case Studies

4 Conclusion

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

18

Semantic Conformance

Test # tests

State Updates 09
Basic Operators 19
Storage Lookups 07
Stack Lookups 14
Conditionals 2

Store Assignment 15
Variable Declarations 04

Total 70

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

19

Case Studies

Banking contract
• User to deposit and withdraw funds
• Based on the idea of ERC-20 Tokens
• Property: The funds associated with our contract on the blockchain covers

at least the sum of all internal balances

Casino contract
• Betting contract based on the idea of a flipping a coin
• VerifyThis long-term verification challengea

• Property: Casino has always enough funds to cover the pot
ahttps://verifythis.github.io/02casino/

https://web.archive.org/web/20241209135636/https://verifythis.github.io/02casino/

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

19

Case Studies

Banking contract
• User to deposit and withdraw funds
• Based on the idea of ERC-20 Tokens
• Property: The funds associated with our contract on the blockchain covers

at least the sum of all internal balances

Casino contract
• Betting contract based on the idea of a flipping a coin
• VerifyThis long-term verification challengea

• Property: Casino has always enough funds to cover the pot
ahttps://verifythis.github.io/02casino/

https://web.archive.org/web/20241209135636/https://verifythis.github.io/02casino/

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

20

Case Studies

Voting contract
• Implements delegated voting idea
• Official example from Solidity documentationa

• Property: Number of votes is always bound by the number of eligible voters
ahttps://docs.soliditylang.org/en/v0.8.25/solidity-by-example.html#voting

Auction contract
• Open auction with bidding and automatic determination of highest bidder
• Official example from Solidity documentationa

• Property: Beneficiary and bidders will always be able to get their funds
ahttps:

//docs.soliditylang.org/en/v0.8.25/solidity-by-example.html#simple-open-auction

https://docs.soliditylang.org/en/v0.8.25/solidity-by-example.html#voting
https://docs.soliditylang.org/en/v0.8.25/solidity-by-example.html#simple-open-auction
https://docs.soliditylang.org/en/v0.8.25/solidity-by-example.html#simple-open-auction

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

20

Case Studies

Voting contract
• Implements delegated voting idea
• Official example from Solidity documentationa

• Property: Number of votes is always bound by the number of eligible voters
ahttps://docs.soliditylang.org/en/v0.8.25/solidity-by-example.html#voting

Auction contract
• Open auction with bidding and automatic determination of highest bidder
• Official example from Solidity documentationa

• Property: Beneficiary and bidders will always be able to get their funds
ahttps:

//docs.soliditylang.org/en/v0.8.25/solidity-by-example.html#simple-open-auction

https://docs.soliditylang.org/en/v0.8.25/solidity-by-example.html#voting
https://docs.soliditylang.org/en/v0.8.25/solidity-by-example.html#simple-open-auction
https://docs.soliditylang.org/en/v0.8.25/solidity-by-example.html#simple-open-auction

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

21

Case Studies

Bank Casino Voting Auction
0

50

100

150

200

250

11

66 76
56

Bank Casino Voting Auction
0

50

100

150

200

250

70
43

203
225

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

22

1 Introduction
Smart Contracts
The Problem

2 Isabelle/Solidity
Overview
Banking Contract

3 Evaluation
Conformance Testing
Case Studies

4 Conclusion

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

23

Summary

A foundational approach
• Specification and verification from first principles
• Correct by construction

Supports a large subset of Solidity features
• Domain specific language features and semantic intricacies
• Advanced storage model with support for storage, memory, calldata, stack

High semantic conformance
• Large set of unit tests
• Fuzzy testing framework in development

Used to verify popular contracts
• Used for the verification of four popular contracts
• Results are promising

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

23

Summary

A foundational approach
• Specification and verification from first principles
• Correct by construction

Supports a large subset of Solidity features
• Domain specific language features and semantic intricacies
• Advanced storage model with support for storage, memory, calldata, stack

High semantic conformance
• Large set of unit tests
• Fuzzy testing framework in development

Used to verify popular contracts
• Used for the verification of four popular contracts
• Results are promising

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

23

Summary

A foundational approach
• Specification and verification from first principles
• Correct by construction

Supports a large subset of Solidity features
• Domain specific language features and semantic intricacies
• Advanced storage model with support for storage, memory, calldata, stack

High semantic conformance
• Large set of unit tests
• Fuzzy testing framework in development

Used to verify popular contracts
• Used for the verification of four popular contracts
• Results are promising

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

23

Summary

A foundational approach
• Specification and verification from first principles
• Correct by construction

Supports a large subset of Solidity features
• Domain specific language features and semantic intricacies
• Advanced storage model with support for storage, memory, calldata, stack

High semantic conformance
• Large set of unit tests
• Fuzzy testing framework in development

Used to verify popular contracts
• Used for the verification of four popular contracts
• Results are promising

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

24

Limitations and Future Work

Memory Arrays
• Reasoning about memory arrays is difficult
• Calculus for Solidity-like memory arrays (Asad Ahmed)

Correctness of Bytecode
• Compiler could introduce bugs
• Verified compilation (Mark Utting, Naipend Dong, Horacio M. A. Quiles,

and Achim D. Brucker)

Missing of Advanced Features
• Inheritance, Libraries, Inline Assembly, . . .
• Additional Case Studies (Asad Ahmed and Filip Maric)
• Verification Competition (Massimo Bartoletti and Enrico Lipparini)

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

24

Limitations and Future Work

Memory Arrays
• Reasoning about memory arrays is difficult
• Calculus for Solidity-like memory arrays (Asad Ahmed)

Correctness of Bytecode
• Compiler could introduce bugs
• Verified compilation (Mark Utting, Naipend Dong, Horacio M. A. Quiles,

and Achim D. Brucker)

Missing of Advanced Features
• Inheritance, Libraries, Inline Assembly, . . .
• Additional Case Studies (Asad Ahmed and Filip Maric)
• Verification Competition (Massimo Bartoletti and Enrico Lipparini)

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

24

Limitations and Future Work

Memory Arrays
• Reasoning about memory arrays is difficult
• Calculus for Solidity-like memory arrays (Asad Ahmed)

Correctness of Bytecode
• Compiler could introduce bugs
• Verified compilation (Mark Utting, Naipend Dong, Horacio M. A. Quiles,

and Achim D. Brucker)

Missing of Advanced Features
• Inheritance, Libraries, Inline Assembly, . . .
• Additional Case Studies (Asad Ahmed and Filip Maric)
• Verification Competition (Massimo Bartoletti and Enrico Lipparini)

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

25

References I

Diego Marmsoler, Asad Ahmed, and Achim D. Brucker.
Secure Smart Contracts with Isabelle/Solidity.
In Alexandre Madeira and Alexander Knapp, editors, Software Engineering
and Formal Methods - 22nd International Conference, SEFM 2024, Aveiro,
Portugal, November 6-8, 2024, Proceedings, volume 15280 of Lecture Notes
in Computer Science, pages 162–181. Springer, 2024.
Asad Ahmed and Diego Marmsoler.
Isabelle/Solidity: A Tool for the Verification of Solidity Smart Contracts
(Tool Paper).
In Diego Marmsoler and Meng Xu, editors, 6th International Workshop on
Formal Methods for Blockchains, FMBC 2025, May 4, 2025, Hamilton,
Canada, volume 129 of OASIcs, pages 12:1–12:9. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2025.

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

26

References II

Diego Marmsoler and Billy Thornton.
Deductive Verification of Solidity Smart Contracts with SSCalc.
Sci. Comput. Program., 243:103267, 2025.
Diego Marmsoler and Achim D. Brucker.
Isabelle/Solidity: A deep embedding of Solidity in Isabelle/HOL.
Formal Aspects Comput., 37(2):15:1–15:56, 2025.

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

λ
→

∀
=Is

ab
el
le

β

α

Solidity

27

A Simple Banking Contract in Solidity
Solidity1 contract Attacker {

2 uint8 iterations;
3 address bank;
4 constructor (address _ba, uint8 _it) payable public {
5 bank = _ba;
6 iterations = _it;
7 }
8 function deposit() public {
9 bank.call.value(1 ether).gas(20764) (bytes4(sha3("deposit()")));

10 }
11 function withdraw() public {
12 bank.call(bytes4(sha3("withdraw()")));
13 }
14 function () payable public {
15 if (iterations > 0) {
16 iterations --;
17 bank.call(bytes4(sha3("withdraw()")));
18 }
19 }
20 }

	Introduction
	Smart Contracts
	The Problem

	Isabelle/Solidity
	Overview
	Banking Contract

	Evaluation
	Conformance Testing
	Case Studies

	Conclusion
	Appendix

