Secure Smart Contracts with Isabelle/Solidity

on 2025-09-08

Diego Marmsoler

d.marmsoler@exeter.ac.uk

www.marmsoler.com

y © DiegoMarmsoler

💓 @dmarmsoler.bsky.social

Department of Computer Science University of Exeter

Joint work with Achim D. Brucker and Asad Ahmed

Overview
Banking Contract

3 Evaluation

Conformance Testing Case Studies

4 Conclusion

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introduc

Smart Contracts The Problem

sabelle/Solidity

Overview Banking Contract

luation

Conformance Testing
Case Studies

Overview
Banking Contract

3 Evaluation
Conformance Testin

4 Conclusion

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introduction

Smart Contracts The Problem

Isabelle/Solidity
Overview

Banking Contract

luation

Conformance Testing
Case Studies

Blockchain and Smart Contracts

Blockchain Novel technology to store data in *decentralized* and *immutable* manner

- Main application: Cryptocurrencies
- Other: Finance, Healthcare, Identity Management, ...

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introduction

Smart Contracts

The Problem

sabelle/Solidity

Overview Banking Contract

Evaluation

Conformance Testing
Case Studies

Blockchain and Smart Contracts

Blockchain Novel technology to store data in decentralized and immutable manner

- Main application: Cryptocurrencies
- Other: Finance, Healthcare, Identity Management, . . .

Smart Contracts Digital contracts which are automatically executed once certain conditions are met

- Example: Payment release
- Every day hundreds of thousands of contracts are deployed managing millions of dollars in assets

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Smart Contracts The Problem

Overview Banking Contract

Conformance Testing Case Studies

Smart Contracts and Solidity

Technically, a smart contract (SC) is *code which is deployed to a blockchain*, and which can be executed by sending special transactions to it

- Usually developed in a high-level programming language
- Most popular language: Solidity

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introductio

Smart Contracts

The Problem

sabelle/Solidity

Overview Banking Contract

Evaluation
Conformance Testing

Case Studies

Smart Contracts and Solidity

Technically, a smart contract (SC) is *code which is deployed to a blockchain*, and which can be executed by sending special transactions to it

- Usually developed in a high-level programming language
- Most popular language: Solidity

Solidity

- Works on all EVM-based platforms, such as Ethereum, Polygon, . . .
- More than 90% of all smart contracts are developed using Solidity

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introductio

Smart Contracts
The Problem

sabelle/Solidity

Overview Banking Contract

Evaluation

Conformance Testing

Conformance Testing

Case Studies

A Simple Banking Contract in Solidity

```
Solidity
1 contract Bank {
    mapping(address => uint256) balances;
3
    function deposit() external payable {
4
5
      balances[msg.sender] = balances[msg.sender] + msg.value;
6
7
8
    function reset() internal {
      balances[msg.sender] = 0:
9
10
11
12
    function withdraw() external {
13
      uint256 bal = balances[msg.sender];
      reset();
14
15
      msg.sender.transfer(bal);
16
17 }
```

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introduction

Smart Contracts

The Problem

sabelle/Solidity

Overview
Banking Contract

valuation

Conformance Testing
Case Studies

Conclusion

The Problem With Smart Contracts

As with every computer program, SCs may contain bugs which can be exploited

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introductio

Smart Contracts
The Problem

sabelle/Solidity

Overview Banking Contract

Evaluation
Conformance Testing
Case Studies

Conclusion

The Problem With Smart Contracts

As with every computer program, SCs may contain bugs which can be exploited

Since SCs are used to automate financial transactions, such exploits may result in *high economic losses*

- Example: DAO attack in 2016 resulted in a loss of approximately \$60M
- Since 2019, more than \$5B have been lost due to vulnerabilities in SCs

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introduction

Smart Contracts
The Problem

belle/Solidity

Overview Banking Contract

Evaluation

Conformance Testing

Case Studies

The Problem With Smart Contracts

As with every computer program, SCs may contain bugs which can be exploited

Since SCs are used to automate financial transactions, such exploits may result in *high economic losses*

- Example: DAO attack in 2016 resulted in a loss of approximately \$60M
- Since 2019, more than \$5B have been lost due to vulnerabilities in SCs

Together with the fact that SCs are only difficult to update/remove it is important to "get them right" before deployment

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introduction

Smart Contracts
The Problem

belle/Solidity

Overview Banking Contract

Evaluation
Conformance Testing

Case Studies

Smart Contract Verification

Popular approaches to verify Solidity smart contracts

Certora Chandrakana Nandi, Mooly Sagiv, and Daniel Jackson (2022)

SolCMC Leonardo Alt (2022)

solc-verify Ákos Hajdu and Dejan Jovanović (2020)

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introduction

Smart Contracts
The Problem

sabelle/Solidity

Overview Banking Contract

Evaluation
Conformance Testing

Case Studies
Conclusion

Smart Contract Verification

Popular approaches to verify Solidity smart contracts

Certora Chandrakana Nandi, Mooly Sagiv, and Daniel Jackson (2022) SolCMC Leonardo Alt (2022)

solc-verify Ákos Hajdu and Dejan Jovanović (2020)

All based on SMT solvers

- Axiomatic: Easy to introduce inconsistencies (soundness)
- Automatic: Fail to verify more complex properties (completeness)

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introduction

The Problem

sabelle/Solidity

Overview
Banking Contract

Evaluation

Conformance Testing

Case Studies

Smart Contract Verification

Popular approaches to verify Solidity smart contracts

Certora Chandrakana Nandi, Mooly Sagiv, and Daniel Jackson (2022)

SolCMC Leonardo Alt (2022)

solc-verify Ákos Hajdu and Dejan Jovanović (2020)

All based on SMT solvers

- Axiomatic: Easy to introduce inconsistencies (soundness)
- Automatic: Fail to verify more complex properties (completeness)

Isabelle/Solidity

- Foundational approach guarantees correctness by construction
- Based on HOL allows verification of more complex properties

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introduction

The Problem

sabelle/Solidity

Overview Banking Contract

Evaluation

Conformance Testing

Case Studies

Introduction Smart Contracts The Problem

2 Isabelle/Solidity

Overview
Banking Contract

3 Evaluation
Conformance Testing

4 Conclusion

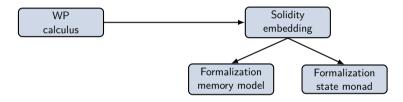
Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introdu

Smart Contracts
The Problem

Isabelle/Solidity


Overview

Banking Contract

Conformance Testing
Case Studies

. . .

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introdu

Smart Contracts The Problem

sabelle/Solidity

Overview

Banking Contract

Evaluation

Conformance Testing

Conclusion

Secure Smart Contracts with Isabelle/Solidity

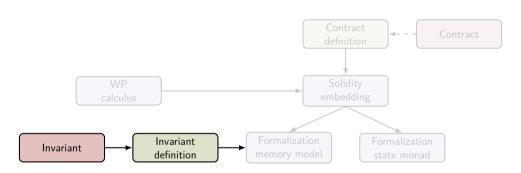
Diego Marmsoler

Introd

Smart Contracts The Problem

abelle/Solidity

Overview


Banking Contract

Evaluation

Conformance Testing
Case Studies

Conclusion

Secure Smart Contracts with Isabelle/Solidity

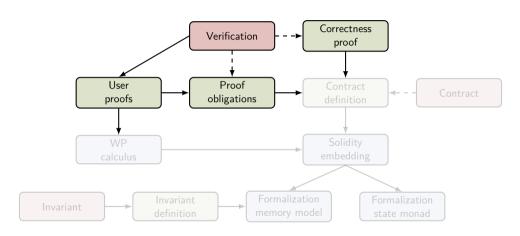
Diego Marmsoler

Introdu

Smart Contracts
The Problem

sabelle/Solidity

Overview


Banking Contract

Evaluation

Conformance Testing
Case Studies

Conclusion

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introdu

Smart Contracts
The Problem

sabelle/Solidity

Overview

Banking Contract

Evaluation

Conformance Testing

Case Studies

Banking Contract In Isabelle/Solidity

```
Isabelle
        1 contract Bank
                                           for balances: TMap (TValue TAddress) (TValue TSint)
        3
                                             constructor where
        5
                                                                    (skip)
        6
        7
                                             cfunction deposit external payable where
                                                              balances [\langle \text{sender} \rangle] ::= balances \sim_s [\langle \text{sender} \rangle] \langle + \rangle \langle \text{value} \rangle,
       9
10
                                             cfunction reset where
                                                              balances [\langle sender \rangle] ::=_s \langle sint \rangle 0,
11
 12
13
                                             cfunction withdraw external where
 14
                                                              do {
                                                                               bal :: TSint;
15
                                                                               bal [] ::= balances \sim_s [\langle sender \rangle];
16
                                                                               icall reset:
17
                                                                                  \langle {	transfer} \rangle \langle {	transfer
 18
 19
```

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introduction

Smart Contracts
The Problem

Isabelle/Solidity

Overview

Banking Contract

Conformance Testing

Case Studies

Banking Contract In Isabelle/Solidity

```
1 contract Bank
2 for balances: TMap (TValue TAddress) (TValue TSint)
3
4 constructor where
5 \langle \text{skip} \rangle
6
7 cfunction deposit external payable where
8 balances [\langle \text{sender} \rangle] ::=_s \text{balances} \sim_s [\langle \text{sender} \rangle] \langle + \rangle \langle \text{value} \rangle,
9
10 ...
```

Generated artifacts

- Mutual recursive, partial function definitions
- Inductive proof rule

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introduc

Smart Contracts The Problem

Isabelle/Solidity
Overview

Banking Contract

Banking Contract

Conformance Testing

P(balances, balance)?

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introd

Smart Contracts The Problem

Isabelle/Solidit

Overview

Banking Contract

Evaluation

Conformance Testing
Case Studies

$$\sum_{ad}$$
 balances(ad) \leq balance

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introd

Smart Contracts The Problem

Isabelle/Solidity

Overview

Banking Contract

Evaluation

Conformance Testing
Case Studies

$$\sum_{ad}$$
 balances(ad) \leq balance

```
1 invariant sum_bal sb where
```

Isabelle

- $2 \text{ snd } \frac{\text{sb}}{\text{sb}} \geq$
- 2 SHQ SU 2
- $\sum ad.$ unat (sint (vt ((mp (fst sb balances)) (Address ad))))
- 4 for Bank

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introdu

Smart Contracts The Problem

Isabelle/Solidity

Overview

Banking Contract

valuation

Conformance Testing
Case Studies

$$\sum_{ad}$$
 balances(ad) \leq balance

```
1 invariant sum_bal sb where
```

Isabelle

- $2 \text{ snd } \frac{\text{sb}}{\text{sb}} \geq$
- \sum ad. unat (sint (vt ((mp (fst sb balances)) (Address ad))))
- 4 for Bank

Generated artifacts

- Definition for invariant
- Specification and proofs for introduction and elimination rules

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Smart Contracts The Problem

Overview

Banking Contract

Conformance Testing

Case Studies


```
1 verification sum_bal:
2   sum_bal
3   K (K (K True))
4   deposit K (K (K True)) and
5   withdraw K (K (K True)) and
6   reset reset_post
7   for Bank
```

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introduc

Smart Contracts The Problem

Isabelle/Solidity

Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

1 verification sum_bal:
2 sum_bal
3 K (K (K True))
4 deposit K (K (K True)) and
5 withdraw K (K (K True)) and
6 reset reset_post
7 for Bank

Generated artifacts

- Proof obligations
- Correctness proof by fixed-point induction

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introduc

Smart Contracts The Problem

Isabelle/Solidity

Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Isabelle/Solidity generates one proof obligation for each method

Constructor: Establishes invariant and post-condition

Internal: Establishes post-condition

• External: Preserves invariant and establishes post-condition

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introdu

Smart Contracts The Problem

Isabelle/Solidity

Overview

Banking Contract

valuation

Conformance Testing
Case Studies

Isabelle/Solidity generates one proof obligation for each method

- Constructor: Establishes invariant and post-condition
- Internal: Establishes post-condition
- External: Preserves invariant and establishes post-condition

```
1 \land call.

2 (\land x h r. effect (call x) h r \Longrightarrow vcond x h r) \Longrightarrow

3 effect (deposit call) s r \Longrightarrow

4 inv_state sum_bal s \Longrightarrow

5 post s r sum_bal (K True) (K (K (K True)))
```

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introdu

Smart Contracts The Problem

Isabelle/Solidity

Overview

Banking Contract

Evaluation Conformance Testing

Conformance Testing

Case Studies


```
Isabelle
 1 show "\wedge call.
   (\bigwedge x \ h \ r. \ effect \ (call \ x) \ h \ r \Longrightarrow vcond \ x \ h \ r) \Longrightarrow
   effect (deposit call) s r \Longrightarrow
    inv state sum bal s \Longrightarrow
   post s r sum bal (K True) (K (K (K True)))"
6 unfolding deposit def
 7 apply (erule post_exc_true, erule_tac post_wp)
8 unfolding inv_state_def deposit_post_def
9 apply vcg
10 apply (auto simp add: wpsimps)
11 apply (rule bal_msg_sender, assumption)
12 apply vcg
13 apply (auto simp add: wpsimps intro!: sum_ball 1)
14 apply vcg
15 apply (auto simp add: wpsimps)
16 apply (rule bal_msg_sender, assumption)
17 by vcg
```

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introduc

Smart Contracts
The Problem

Isabelle/Solidity

Overview

Banking Contract

valuation

Conformance Testing

Isabelle/Solidity Language Features

Isabelle/Solidity supports a large subset of Solidity

- Domain specific language features: payable, transfer, balance, . . .
- Advanced storage model: Storage, Memory, Calldata, Stack
- Semantic intricacies: fallback functions, safe/unsafe arithmetic, array assignments

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introdu

Smart Contracts The Problem

Isabelle/Solidity

Overview

Banking Contract

Banking Contract

Evaluation
Conformance Testing

Case Studies

1 Introduction
Smart Contracts
The Problem

2 Isabelle/Solidity
 Overview
 Banking Contract

3 Evaluation
Conformance Testing
Case Studies

4 Conclusion

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introduc

Smart Contracts
The Problem

Isabelle/Solidity

Overview Banking Contract

aluation

Conformance Testing

Case Studies

Semantic Conformance

Test	# tests
State Updates	09
Basic Operators	19
Storage Lookups	07
Stack Lookups	14
Conditionals	2
Store Assignment	15
Variable Declarations	04
Total	70

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introduction

Smart Contracts The Problem

Isabelle/Solidity Overview

Banking Contract

Evaluation

Conformance Testing

Case Studies

Case Studies

Banking contract

- User to deposit and withdraw funds
- Based on the idea of ERC-20 Tokens
- Property: The funds associated with our contract on the blockchain covers at least the sum of all internal balances

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introducti

Smart Contracts The Problem

sabelle/Solidity

Overview

Banking Contract

aluation

Conformance Testing

Case Studies

Case Studies

Banking contract

- User to deposit and withdraw funds
- Based on the idea of FRC-20 Tokens
- Property: The funds associated with our contract on the blockchain covers at least the sum of all internal balances

Casino contract

- Betting contract based on the idea of a flipping a coin
- VerifyThis long-term verification challenge^a
- Property: Casino has always enough funds to cover the pot

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Smart Contracts The Problem

Overview

Banking Contract

Conformance Testing

Case Studies

^ahttps://verifythis.github.io/02casino/

Case Studies

Voting contract

- Implements delegated voting idea
- Official example from Solidity documentation^a
- Property: Number of votes is always bound by the number of eligible voters

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introduction

Smart Contracts The Problem

sabelle/Solidity

Overview Banking Contract

aluation

Conformance Testing

Case Studies

 $^{{\}it a} https://docs.soliditylang.org/en/v0.8.25/solidity-by-example.html\#voting$

Case Studies

Voting contract

- Implements delegated voting idea
- Official example from Solidity documentation^a
- Property: Number of votes is always bound by the number of eligible voters

Auction contract

- Open auction with bidding and automatic determination of highest bidder
- Official example from Solidity documentation^a
- Property: Beneficiary and bidders will always be able to get their funds

^ahttps:

// docs. solidity lang. org/en/v0.8.25/solidity-by-example. html # simple-open-auction

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

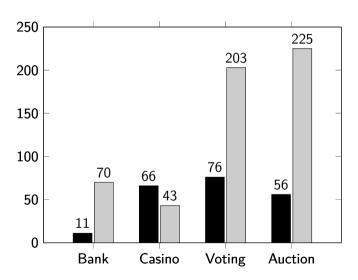
Introduction
Smart Contracts

The Problem

Overview

Banking Contract

Conformance Testing


Case Studies

Conclusion

 $^{^{}a} \rm https://docs.soliditylang.org/en/v0.8.25/solidity-by-example.html\#voting$

Case Studies

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introd

Smart Contracts The Problem

Isabelle/Solidity

Overview
Banking Contract

Evaluation

Conformance Testing
Case Studies

1 Introduction
Smart Cont

The Problem

2 Isabelle/Solidity

Overview
Banking Contract

Evaluation

Conformance Testing Case Studies

4 Conclusion

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introduc

Smart Contracts The Problem

sabelle/Solidity

Overview Banking Contract

aluation

Conformance Testing
Case Studies

A foundational approach

- Specification and verification from first principles
- Correct by construction

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introdu

Smart Contracts The Problem

Overview Overview

Banking Contract

Evaluation Conformance Testing

Conformance Testing
Case Studies

A foundational approach

- Specification and verification from first principles
- Correct by construction

Supports a large subset of Solidity features

- Domain specific language features and semantic intricacies
- Advanced storage model with support for storage, memory, calldata, stack

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introdu

Smart Contracts

abelle/Solidity

Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

A foundational approach

- Specification and verification from first principles
- Correct by construction

Supports a large subset of Solidity features

- Domain specific language features and semantic intricacies
- Advanced storage model with support for storage, memory, calldata, stack

High semantic conformance

- Large set of unit tests
- Fuzzy testing framework in development

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introduc

Smart Contracts
The Problem

sabelle/Solidity

Overview
Banking Contract

Evaluation
Conformance Testing

Case Studies

A foundational approach

- Specification and verification from first principles
- Correct by construction

Supports a large subset of Solidity features

- Domain specific language features and semantic intricacies
- Advanced storage model with support for storage, memory, calldata, stack

High semantic conformance

- Large set of unit tests
- Fuzzy testing framework in development

Used to verify popular contracts

- Used for the verification of four popular contracts
- Results are promising

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introduction

Smart Contracts The Problem

Isabelle/Solidity
Overview

Banking Contract

Conformance Testing

Limitations and Future Work

Memory Arrays

- Reasoning about memory arrays is difficult
- Calculus for Solidity-like memory arrays (Asad Ahmed)

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introduction

Smart Contracts The Problem

sabelle/Solidity

Overview Banking Contract

Evaluation

Conformance Testing

Case Studies
Conclusion

Limitations and Future Work

Memory Arrays

- Reasoning about memory arrays is difficult
- Calculus for Solidity-like memory arrays (Asad Ahmed)

Correctness of Bytecode

- Compiler could introduce bugs
- Verified compilation (Mark Utting, Naipend Dong, Horacio M. A. Quiles, and Achim D. Brucker)

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Smart Contracts
The Problem

sabelle/Solidity

Overview Banking Contract

Evaluation
Conformance Testing

Limitations and Future Work

Memory Arrays

- Reasoning about memory arrays is difficult
- Calculus for Solidity-like memory arrays (Asad Ahmed)

Correctness of Bytecode

- Compiler could introduce bugs
- Verified compilation (Mark Utting, Naipend Dong, Horacio M. A. Quiles, and Achim D. Brucker)

Missing of Advanced Features

- Inheritance, Libraries, Inline Assembly, . . .
- Additional Case Studies (Asad Ahmed and Filip Maric)
- Verification Competition (Massimo Bartoletti and Enrico Lipparini)

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Smart Contracts
The Problem

sabelle/Solidity

Overview Banking Contract

Evaluation

Conformance Testing

References I

Diego Marmsoler, Asad Ahmed, and Achim D. Brucker. Secure Smart Contracts with Isabelle/Solidity.

In Alexandre Madeira and Alexander Knapp, editors, Software Engineering and Formal Methods - 22nd International Conference, SEFM 2024, Aveiro, Portugal, November 6-8, 2024, Proceedings, volume 15280 of Lecture Notes in Computer Science, pages 162–181. Springer, 2024.

Asad Ahmed and Diego Marmsoler.

Isabelle/Solidity: A Tool for the Verification of Solidity Smart Contracts (Tool Paper).

In Diego Marmsoler and Meng Xu, editors, 6th International Workshop on Formal Methods for Blockchains, FMBC 2025, May 4, 2025, Hamilton, Canada, volume 129 of OASIcs, pages 12:1–12:9. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2025.

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Introduction

The Problem

Overview Banking Contract

Evaluation

Conformance Testing Case Studies

References II

Secure Smart Contracts with Isabelle/Solidity

Diego Marmsoler

Smart Contracts The Problem

Overview Banking Contract

Conformance Testing Case Studies

Diego Marmsoler and Billy Thornton. Deductive Verification of Solidity Smart Contracts with SSCalc. Sci. Comput. Program., 243:103267, 2025.

Diego Marmsoler and Achim D. Brucker. Isabelle/Solidity: A deep embedding of Solidity in Isabelle/HOL. Formal Aspects Comput., 37(2):15:1-15:56, 2025.

```
Solidity
  contract Attacker {
    uint8 iterations:
    address bank:
    constructor (address _ba, uint8 _it) payable public {
5
      bank = ba;
6
      iterations = it;
7
8
    function deposit() public {
9
      bank.call.value(1 ether).gas(20764) (bytes4(sha3("deposit()")));
10
11
    function withdraw() public {
12
      bank.call(bytes4(sha3("withdraw()")));
13
14
    function () payable public {
15
      if (iterations > 0) {
16
        iterations --:
17
        bank.call(bytes4(sha3("withdraw()")));
18
19
20 }
```

