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Blockchain and Smart Contracts

Blockchain Novel technology to store data in decentralized and immutable
manner

• Main application: Cryptocurrencies
• Other: Finance, Healthcare, Identity Management, . . .

Smart Contracts Digital contracts which are automatically executed once
certain conditions are met

• Example: Payment release
• Every day hundreds of thousands of contracts are

deployed managing millions of dollars in assets



Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

3

Blockchain and Smart Contracts

Blockchain Novel technology to store data in decentralized and immutable
manner

• Main application: Cryptocurrencies
• Other: Finance, Healthcare, Identity Management, . . .

Smart Contracts Digital contracts which are automatically executed once
certain conditions are met

• Example: Payment release
• Every day hundreds of thousands of contracts are

deployed managing millions of dollars in assets



Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts

The Problem

Isabelle/Solidity
Overview

Banking Contract

Evaluation
Conformance Testing

Case Studies

Conclusion

λ
→

∀
=Is

ab
el
le

β

α

Solidity

4

Smart Contracts and Solidity

Technically, a smart contract (SC) is code which is deployed to a blockchain,
and which can be executed by sending special transactions to it

• Usually developed in a high-level programming language
• Most popular language: Solidity

Solidity
• Works on all EVM-based platforms, such as Ethereum, Polygon, . . .
• More than 90% of all smart contracts are developed using Solidity
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A Simple Banking Contract in Solidity

Solidity1 contract Bank {
2 mapping(address => uint256) balances;
3
4 function deposit() external payable {
5 balances[msg.sender] = balances[msg.sender] + msg.value;
6 }
7
8 function reset() internal {
9 balances[msg.sender] = 0;

10 }
11
12 function withdraw() external {
13 uint256 bal = balances[msg.sender];
14 reset();
15 msg.sender.transfer(bal);
16 }
17 }
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The Problem With Smart Contracts

As with every computer program, SCs may contain bugs which can be exploited

Since SCs are used to automate financial transactions, such exploits may result
in high economic losses

• Example: DAO attack in 2016 resulted in a loss of approximately $60M
• Since 2019, more than $5B have been lost due to vulnerabilities in SCs

Together with the fact that SCs are only difficult to update/remove it is
important to “get them right” before deployment
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Smart Contract Verification

Popular approaches to verify Solidity smart contracts
Certora Chandrakana Nandi, Mooly Sagiv, and Daniel Jackson (2022)

SolCMC Leonardo Alt (2022)
solc-verify Ákos Hajdu and Dejan Jovanović (2020)

All based on SMT solvers
• Axiomatic: Easy to introduce inconsistencies (soundness)
• Automatic: Fail to verify more complex properties (completeness)

Isabelle/Solidity
• Foundational approach guarantees correctness by construction
• Based on HOL allows verification of more complex properties
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solc-verify Ákos Hajdu and Dejan Jovanović (2020)
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Architecture of Isabelle/Solidity

WP
calculus

Solidity
embedding

Formalization
memory model

Formalization
state monad
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Architecture of Isabelle/Solidity

Verification

Proof
obligations

User
proofs

Correctness
proof

Contract
definition Contract

WP
calculus

Solidity
embedding

Invariant Invariant
definition

Formalization
memory model

Formalization
state monad
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Banking Contract In Isabelle/Solidity
Isabelle1 contract Bank

2 for balances: TMap (TValue TAddress) (TValue TSint)
3
4 constructor where
5 ⟨skip⟩
6
7 cfunction deposit external payable where
8 balances [⟨sender⟩] ::=s balances ∼s [ ⟨sender⟩] ⟨+⟩ ⟨value⟩ ,
9

10 cfunction reset where
11 balances [⟨sender⟩] ::=s ⟨sint⟩ 0 ,
12
13 cfunction withdraw external where
14 do {
15 bal :: TSint;
16 bal [] ::= balances ∼s [ ⟨sender⟩];
17 icall reset;
18 ⟨transfer⟩ ⟨sender⟩ (bal ∼ [])
19 }
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Banking Contract In Isabelle/Solidity

Isabelle1 contract Bank
2 for balances: TMap (TValue TAddress) (TValue TSint)
3
4 constructor where
5 ⟨skip⟩
6
7 cfunction deposit external payable where
8 balances [⟨sender⟩] ::=s balances ∼s [ ⟨sender⟩] ⟨+⟩ ⟨value⟩ ,
9

10 ...

Generated artifacts
• Mutual recursive, partial function definitions
• Inductive proof rule
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Invariant For Banking Contract In Isabelle/Solidity

P(balances, balance)?

Isabelle1 invariant sum_bal sb where
2 snd sb ≥
3

∑
ad. unat (sint (vt ((mp (fst sb balances)) (Address ad))))

4 for Bank

Generated artifacts
• Definition for invariant
• Specification and proofs for introduction and elimination rules
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Verifying Banking Contract In Isabelle/Solidity

Isabelle1 verification sum_bal:
2 sum_bal
3 K (K (K True))
4 deposit K (K (K True)) and
5 withdraw K (K (K True)) and
6 reset reset_post
7 for Bank

Generated artifacts
• Proof obligations
• Correctness proof by fixed-point induction
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Verifying Banking Contract In Isabelle/Solidity

Isabelle/Solidity generates one proof obligation for each method
• Constructor: Establishes invariant and post-condition
• Internal: Establishes post-condition
• External: Preserves invariant and establishes post-condition

Isabelle1
∧

call.
2 (

∧
x h r. effect (call x) h r =⇒ vcond x h r) =⇒

3 effect (deposit call) s r =⇒
4 inv_state sum_bal s =⇒
5 post s r sum_bal (K True) (K (K (K True)))
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Verifying Banking Contract In Isabelle/Solidity

Isabelle1 show "
∧

call.
2 (

∧
x h r. effect (call x) h r =⇒ vcond x h r) =⇒

3 effect (deposit call) s r =⇒
4 inv_state sum_bal s =⇒
5 post s r sum_bal (K True) (K (K (K True)))"
6 unfolding deposit_def
7 apply (erule post_exc_true, erule_tac post_wp)
8 unfolding inv_state_def deposit_post_def
9 apply vcg

10 apply (auto simp add: wpsimps)
11 apply (rule bal_msg_sender, assumption)
12 apply vcg
13 apply (auto simp add: wpsimps intro!: sum_balI 1)
14 apply vcg
15 apply (auto simp add: wpsimps)
16 apply (rule bal_msg_sender, assumption)
17 by vcg
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Isabelle/Solidity Language Features

Isabelle/Solidity supports a large subset of Solidity
• Domain specific language features: payable, transfer, balance, . . .
• Advanced storage model: Storage, Memory, Calldata, Stack
• Semantic intricacies: fallback functions, safe/unsafe arithmetic, array

assignments
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Semantic Conformance

Test # tests

State Updates 09
Basic Operators 19
Storage Lookups 07
Stack Lookups 14
Conditionals 2

Store Assignment 15
Variable Declarations 04

Total 70
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Case Studies

Banking contract
• User to deposit and withdraw funds
• Based on the idea of ERC-20 Tokens
• Property: The funds associated with our contract on the blockchain covers

at least the sum of all internal balances

Casino contract
• Betting contract based on the idea of a flipping a coin
• VerifyThis long-term verification challengea

• Property: Casino has always enough funds to cover the pot
ahttps://verifythis.github.io/02casino/

https://web.archive.org/web/20241209135636/https://verifythis.github.io/02casino/
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Case Studies

Voting contract
• Implements delegated voting idea
• Official example from Solidity documentationa

• Property: Number of votes is always bound by the number of eligible voters
ahttps://docs.soliditylang.org/en/v0.8.25/solidity-by-example.html#voting

Auction contract
• Open auction with bidding and automatic determination of highest bidder
• Official example from Solidity documentationa

• Property: Beneficiary and bidders will always be able to get their funds
ahttps:

//docs.soliditylang.org/en/v0.8.25/solidity-by-example.html#simple-open-auction

https://docs.soliditylang.org/en/v0.8.25/solidity-by-example.html#voting
https://docs.soliditylang.org/en/v0.8.25/solidity-by-example.html#simple-open-auction
https://docs.soliditylang.org/en/v0.8.25/solidity-by-example.html#simple-open-auction
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Case Studies

Bank Casino Voting Auction
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Summary

A foundational approach
• Specification and verification from first principles
• Correct by construction

Supports a large subset of Solidity features
• Domain specific language features and semantic intricacies
• Advanced storage model with support for storage, memory, calldata, stack

High semantic conformance
• Large set of unit tests
• Fuzzy testing framework in development

Used to verify popular contracts
• Used for the verification of four popular contracts
• Results are promising
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Limitations and Future Work

Memory Arrays
• Reasoning about memory arrays is difficult
• Calculus for Solidity-like memory arrays (Asad Ahmed)

Correctness of Bytecode
• Compiler could introduce bugs
• Verified compilation (Mark Utting, Naipend Dong, Horacio M. A. Quiles,

and Achim D. Brucker)

Missing of Advanced Features
• Inheritance, Libraries, Inline Assembly, . . .
• Additional Case Studies (Asad Ahmed and Filip Maric)
• Verification Competition (Massimo Bartoletti and Enrico Lipparini)
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A Simple Banking Contract in Solidity
Solidity1 contract Attacker {

2 uint8 iterations;
3 address bank;
4 constructor (address _ba, uint8 _it) payable public {
5 bank = _ba;
6 iterations = _it;
7 }
8 function deposit() public {
9 bank.call.value(1 ether).gas(20764) (bytes4(sha3("deposit()")));

10 }
11 function withdraw() public {
12 bank.call(bytes4(sha3("withdraw()")));
13 }
14 function () payable public {
15 if (iterations > 0) {
16 iterations --;
17 bank.call(bytes4(sha3("withdraw()")));
18 }
19 }
20 }
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